
Monday Trade - Spot

Executive Summary
This audit report was prepared by Quantstamp, the leader in blockchain security.

Type DEX

Timeline 2025-09-01 through 2025-09-25

Language Solidity

Methods
Architecture Review, Unit Testing, Functional
Testing, Computer-Aided Verification, Manual
Review

Specification
Monday Trade Whitepaper

Diff/Fork
information

Forked from: Uniswap V3.

Source Code
SynFutures/MondayTrade-Spot

#e474fa4

Auditors
Hytham Farah Auditing Engineer

Hamed Mohammadi Auditing Engineer

Tim Sigl Auditing Engineer

Documentation quality Medium

Test quality High

Total Findings
13

Fixed: 8 Acknowledged: 4
Mitigated: 1

High severity findings 0

Medium severity findings 2 Fixed: 1 Acknowledged: 1

Low severity findings 6 Fixed: 3 Acknowledged: 2
Mitigated: 1

Undetermined severity
findings

0

Informational findings 5 Fixed: 4 Acknowledged: 1

Summary of Findings
Monday Trade - Spot is a Uniswap V3–based protocol that enhances concentrated-liquidity AMMs by introducing on-chain limit order
functionality, forming a hybrid orderbook–AMM system. It separates liquidity into two categories: traditional AMM liquidity (identical to Uniswap
V3) and order liquidity (limit orders placed at specific price ticks).

Key audit considerations include:

1. A dual-liquidity architecture managed through delegated handler contracts — LiquidityHandler , OrderHandler , and SwapHandler
— all orchestrated by the main MondayPool contract.

2. The Lazy Crossing mechanism - an order execution mechanism that leverages orderTickSpacing for gas efficiency, enabling delayed
order settlements as ticks are crossed.

3. Complex state management around partially filled orders, including deferred settlement to minimize gas consumption.
4. Distinct fee structures applied separately to AMM and order liquidity.

Together, these elements create a sophisticated system balancing AMM liquidity depth with orderbook-style precision.

The most significant issue we found is related to logic errors in the limit order system, which may result in traders overpaying (OYSTR-1), as well
as MEV opportunities that come at the expense of users who have placed orders earlier (OYSTR-2). No high-severity issues were uncovered
during this audit.

Overall, the codebase is well-written but extremely complex. Additional documentation, especially more detailed NatSpec and in-line code
comments (OYSTR-8), would greatly aid in understanding of the codebase and is highly recommended.

FIX-REVIEW UPDATE: Most issues have been properly addressed, with only minor adjustments remaining. Test-related concerns have been fully
resolved, and both comprehensive test suites now pass successfully. Further improvements to documentation—particularly through expanded
NatSpec comments—remain recommended.

https://quantstamp.com/
https://monday.trade/monday_trade_whitepaper.pdf
https://github.com/Uniswap/v3-core/commit/d8b1c635c275d2a9450bd6a78f3fa2484fef73eb
https://github.com/SynFutures/MondayTrade-Spot/
https://github.com/SynFutures/MondayTrade-Spot/e474fa4f0a46b28d1d1feb7fc69026e421d90820

ID DESCRIPTION SEVERITY STATUS

OYSTR-1
Orders Are Filled Beyond the Taker's Price Limit Causing
Unintended Overpayment • Medium Fixed

OYSTR-2 MEV from Partially Filled Orders • Medium Acknowledged

OYSTR-3 Unrestricted Withdrawal Function Allows Arbitrary Caller • Low Acknowledged

OYSTR-4 Possibility of Arithmetic Overflow Leading to Dos • Low Fixed

OYSTR-5 Inconsistent Nonce Increment when Canceling Order • Low Fixed

OYSTR-6 Order Cancellation Griefing • Low Acknowledged

OYSTR-7
Missing divisibility check between tickSpacing and
orderTickSpacing

• Low Fixed

OYSTR-8 Insufficient In-Code and Technical Documentation • Low Mitigated

OYSTR-9
_maxNonceInRange() scans every tick instead of stepping

by orderTickSpacing
• Informational Fixed

OYSTR-10 No Upper Limit for Fee Values • Informational Fixed

OYSTR-11 Minimum Order Amount May Be Set for Uninitialized Tokens • Informational Acknowledged

OYSTR-12
Tick Spacing Exceeding 256 Ticks Creates Gaps in Order
Placement • Informational Fixed

OYSTR-13 Misleading Event Emission • Informational Fixed

Assessment Breakdown
Quantstamp's objective was to evaluate the repository for security-related issues, code quality, and adherence to specification and best
practices.

Disclaimer
Only features that are contained within the repositories at the commit hashes specified on the front page of the report are within the
scope of the audit and fix review. All features added in future revisions of the code are excluded from consideration in this report.

Possible issues we looked for included (but are not limited to):

Transaction-ordering dependence
Timestamp dependence
Mishandled exceptions and call stack limits
Unsafe external calls
Integer overflow / underflow
Number rounding errors
Reentrancy and cross-function vulnerabilities
Denial of service / logical oversights
Access control
Centralization of power
Business logic contradicting the specification
Code clones, functionality duplication
Gas usage
Arbitrary token minting

Methodology

1. Code review that includes the following

1. Review of the specifications, sources, and instructions provided to Quantstamp to make sure we understand the size, scope, and
functionality of the smart contract.

2. Manual review of code, which is the process of reading source code line-by-line in an attempt to identify potential vulnerabilities.
3. Comparison to specification, which is the process of checking whether the code does what the specifications, sources, and instructions

provided to Quantstamp describe.
2. Testing and automated analysis that includes the following:

1. Test coverage analysis, which is the process of determining whether the test cases are actually covering the code and how much code is
exercised when we run those test cases.

2. Symbolic execution, which is analyzing a program to determine what inputs cause each part of a program to execute.
3. Best practices review, which is a review of the smart contracts to improve efficiency, effectiveness, clarity, maintainability, security, and

control based on the established industry and academic practices, recommendations, and research.
4. Specific, itemized, and actionable recommendations to help you take steps to secure your smart contracts.

Scope
The scope focused on all the files that are unique to the Monday Trade protocol and not the contracts that are largely untouched from their
Uniswap V3 fork (forked at commit d8b1c635c275d2a9450bd6a78f3fa2484fef73eb).

Files Included

contracts

├── BUProxy.sol

├── Config.sol

├── LiquidityHandler.sol

├── MondayFactory.sol

├── MondayPool.sol

├── MondayPoolDeployer.sol

├── OrderHandler.sol

├── SwapHandler.sol

├── libraries

│ ├── Tick.sol

│ ├── TickBitmap.sol

├── pearl

│ ├── Broker.sol

│ ├── LibMath.sol

│ ├── LibOrder.sol

├── periphery

 └── SwapRouter.sol

Files Excluded

contracts

├── MondayPoolStorage.sol

├── NoDelegateCall.sol

├── Ownable2Step.sol

├── interfaces

│ ├── callback

│ │ └── *

│ ├── pool

│ │ └── *

│ └── *

├── libraries

│ ├── BitMath.sol

│ ├── FixedPoint128.sol

│ ├── FixedPoint96.sol

│ ├── FullMath.sol

│ ├── LICENSE

│ ├── LICENSE_MIT

│ ├── LiquidityMath.sol

│ ├── LowGasSafeMath.sol

│ ├── Oracle.sol

│ ├── Position.sol

│ ├── SafeCast.sol

│ ├── SqrtPriceMath.sol

│ ├── SwapMath.sol

│ ├── TickMath.sol

│ ├── TransferHelper.sol

│ └── UnsafeMath.sol

├── periphery

│ ├── NonfungiblePositionManager.sol

│ ├── NonfungibleTokenPositionDescriptor.sol

│ ├── base

│ │ └── *

│ ├── examples

│ │ └── *

│ ├── interfaces

│ │ ├── external

│ │ │ └── *

│ │ └── *

│ ├── lens

│ │ └── *

│ ├── libraries

│ │ └── *

│ └── test

│ └── *

└── test

 └── *

Operational Considerations
If the makerFee is a negative value, the protocol earns the leftover fee when the maker's share is deducted from the taker's fees. If the
-makerFee is exactly equal to takerFee , for example -(-0.3) = 0.3 in OrderHandler._updateProtocolFees() , then there

is nothing left of the taker's fee because everything goes to the maker, and the protocol does not earn any fees.
The OrderHandler.place() function only allows placing orders at ticks between -500,000 and 500,000, while Uniswap liquidity can
be placed between tick -887,272 and tick 887,272. It’s unlikely that the price for tokens would move outside of the 500,000 tick range, but
if it does, orders could no longer be placed.
Swap execution may be subject to more variable slippage than traditional AMMs. Specifically, if large limit orders at a tick are canceled
before a user’s transaction is processed, the user may experience a sudden shift from effectively zero slippage (with sufficient resting
liquidity) to standard AMM slippage. This behavior is expected given the hybrid orderbook–AMM design and should be factored into user
and integrator assumptions around execution guarantees.

Key Actors And Their Capabilities
Factory Owner
Responsibilities

The Factory Owner governs protocol-level settings for the Monday Trade - Spot Order Book through the IUniswapV3Factory . This role
manages protocol fees, pool creation, and configuration.

Trust Assumptions

Will not maliciously adjust fee parameters to extract excessive value from users.
Will maintain pool configurations in a way that preserves order validation and fair execution.
Will not use protocol fee authority to destabilize the market.

Exclusive Functions

1. IUniswapV3Factory (referenced via factory):
1. Control pool creation and configuration.
2. Set and update protocol fee parameters (_updateProtocolFees()).
3. Modify fee collection mechanisms impacting protocol revenue.

Config Admin
Responsibilities

The Config Admin manages order-level parameters through the Config contract (accessed from IUniswapV3Factory.factory). This
includes setting fee structures and trade requirements, directly affecting order placement and execution.

Trust Assumptions

Will not set extreme fee parameters that drain liquidity or harm traders.
Will set minOrderAmount values that prevent dust orders without enabling denial-of-service.
Will not manipulate order maker fees or taker fees to unreasonably favor specific actors.

Exclusive Functions

1. IConfig (via factory.config()):
1. minOrderAmount() : Configure minimum order amounts per token.
2. getOrderMakerFee() : Set fees or rebates for order makers.
3. getOrderTakerFee() : Set fees for order takers.
4. Update additional order-specific parameters as needed.

Liquidity Provider
Responsibilities

The liquidity provider is a role inherited from the UniswapV3 protocol. These are the users who deposit and lock up their funds to be used as
liquidity traded in accordance with the AMM price curve.

Order Maker
Responsibilities

The Order Maker places limit orders on specific ticks within the Monday Trade Spot order book. They provide liquidity by placing orders that wait
to be filled by counterparties, earning potential maker fees or rebates based on the configured fee structure.

Order Taker
Responsibilities

The Order Taker executes against existing limit orders through the SwapHandler contract, consuming available order liquidity at specific ticks.
They pay taker fees for immediate execution against maker orders and drive price discovery through their trading activity. Note that order takers
cannot choose which limit order they want to take; rather they must always trade through the oyster swap algorithm, which either provides AMM
or orderbook liquidity depending on what is available at the current tick.

Findings
OYSTR-1
Orders Are Filled Beyond the Taker's Price Limit Causing
Unintended Overpayment

• Medium Fixed

Update
Marked as "Fixed" by the client.
Addressed in: 228f5cab805840af30de94f5e7d0cd210b86a80e .
The client provided the following explanation:

 add X96Limit check after _stepToNextTick in small loop

File(s) affected: SwapHandler.sol

Description: In the inner loop of _swapCrossRange() (L382-492), orders at future order ticks can be filled even when swap() stops at
sqrtLimitX96 before the AMM price reaches those ticks. The current guard (amountRemaining == 0 L410) only covers fully completed

swaps where the AMM filled the whole swap amount, not limit-stopped swaps. This allows order to be filled beyond the actual reached price
boundary, leading takers to pay more than their limit.

Exploit Scenario:
Prerequisite: AMM liquidity exists across the current swap interval, and orders are placed at order ticks further inside that interval.

1. A taker starts a swap with a price limit (sqrtLimitX96), moving price within the current swap interval.
2. The AMM advances toward the next order tick, but the swap hits the limit inside the interval (amount remaining > 0; price does not reach that

order tick).
3. The swap function enters the inner matching loop and scans for the next order tick in the swap direction.
4. Because the price check is missing, it selects that future order tick even though the price of the order tick was not reached

(state.sqrtPriceX96 != TickMath.getSqrtRatioAtTick(orderTick)).
5. It proceeds to fill orders at the unreached tick, increasing partialFilledSize and charging the taker.
6. Outcome: part of the swap executes at a worse price than the taker’s limit (orders filled beyond the actually reached boundary).

Recommendation: Only fill orders at a tick when the AMM has actually reached it. Two possible ways to enforce that are the following:
1. Cap the inner-loop “finalTick” by the tick at the sqrtLimitX96 (direction-aware), so you only consider order ticks up to the limit and not

beyond the next swap boundary.
2. After stepping toward an order tick, only fill if the AMM actually reached that tick (state.sqrtPriceX96 == sqrtRatioAtTick)

OYSTR-2 MEV from Partially Filled Orders • Medium Acknowledged

Update
Marked as "Acknowledged" by the client.
The client provided the following explanation:

 Since our partialFill and withdraw mechanisms need to preserve the current situation, the code will not
change. Document has updated in this public link: https://ribbon-roast-c38.notion.site/Integration-
Instruction-en-1f5c0a1d6a2e8046a263df92fdd49255

File(s) affected: SwapHandler.sol , OrderHandler.sol

Description: When an order at a tick is partially filled, the orderNonce does not increment. Any subsequent orders placed at that tick will
therefore inherit the same nonce. This creates two classes of exploit scenarios:

1. Race to Withdraw Profits:
Once an order is partially filled, the filled amount can only be withdrawn once. Whoever calls withdraw() first will receive the tokens. This
means that if the original order owner is not actively monitoring, another party can place a new order at that tick and immediately withdraw the
already-filled portion. The original order owner may “never” be able to claim their rightful tokens.

2. Front-Running on Partial Fill:
A trader can observe that an order at a tick has been partially filled (via mempool monitoring), quickly place their own order at the same tick, and
immediately call withdraw() . This allows them to claim the partially filled amount risk-free, and then proceed to trade at the updated market
price.

This behavior creates a risk-free profit opportunity (MEV) for active traders at the expense of passive order owners. Original users are forced to
wait until the price once again returns to their tick before they can potentially recoup value.

This attack vector is feasible in both private and public mempools. In public mempools, it is significantly worse, since attackers can easily attempt
to position their withdrawal transactions directly after a swap that caused a partial fill.

Exploit Scenario:
Setup: ETH/USDC pool, price = 3000. Alice places 1 ETH sell order at tick 75100.
Partial Fill: A buyer takes 0.4 ETH. Alice earns 1200 USDC, but orderNonce (5) is unchanged. partialFilledSize = 0.4 .
Exploit:

1. Bob sees the fill.
2. Places 0.4 ETH order at same tick → inherits nonce 5.
3. Calls withdraw() , passes checks, and withdraws 1200 USDC from Alice’s partial fill.
4. partialFilledSize reduced to 0.

Impact: Alice’s rightful 1200 USDC is already claimed. She must wait for price to return or cancel her order at a loss.

Recommendation: Either document the risks clearly to the user or ensure that anyone who places an order after a trade partially fills that tick will
not be able to withdraw profits from that order specifically.

OYSTR-3
Unrestricted Withdrawal Function Allows Arbitrary Caller

• Low Acknowledged

Update
Marked as acknowledged since the removal of the function in the router does not restrict the caller of the withdrawal function in any
way.

Update
Marked as "Mitigated" by the client.
Addressed in: a65f29807945c17bf82ce79bdb9a646377fa2524 .
The client provided the following explanation:

 In order to allow for flexible withdrawal, the withdraw() function keeps not imposing any permission
restrictions. The withdraw function in swapRouter() is actually useless and we have deleted it.

File(s) affected: SwapRouter.sol , MondayPool.sol

Description: The withdraw() function does not enforce that the caller is the user , allowing anyone to initiate withdrawals on behalf of
another user. While this design may be intentional to support the SwapRouter.withdraw() flow, it represents a deviation from standard
access control practices. The severity is limited since funds always reach their rightful owner and no further state changes are possible once an
order becomes withdrawable.

However, the caller's ability to control the needNativeToken parameter is problematic, as it determines whether tokens are withdrawn as ETH
or WETH. In scenarios where the receiver can only handle one token type, selecting the incorrect format would cause the withdrawn tokens to
become stuck at the receiver address.

Recommendation: Add validation to ensure msg.sender is either the SwapRouter contract or matches the user parameter in
withdraw() . Apply the same validation inside SwapRouter.withdraw() .

OYSTR-4 Possibility of Arithmetic Overflow Leading to Dos • Low Fixed

Update
Marked as "Fixed" by the client.
Addressed in: 08ea2ffc5ff8f662280e7824dd1f04918cf7e1f7 .

File(s) affected: LibOrder.sol

Description: The _calAmountAtCurrentTick() function, when calculating the amount of token1 during a zeroForOne trade, computes
uint256(sqrtPriceX96) * uint256(size) as input for the mulDiv() function. This calculation can overflow and cause DoS when

placing or canceling orders with huge size at high ticks.

Exploit Scenario:
Below is a table outlining when an overflow would occur when the max tick is used:

 | Tick | sqrtPriceX96 | Min Overflow Amount | Ratio to uint128.max |

 |---------|--------------|---------------------|----------------------|

 | 500,000 | 5.70 × 10^36 | 20.32 × 10^36 | 5.97% |

Recommendation: Use the same approach as in the other case within this function by first calculating half of the result, storing it in a temporary
variable, and then finalizing the computation.

OYSTR-5 Inconsistent Nonce Increment when Canceling Order • Low Fixed

Update
The nonce is now also incremented when the normal cancel path reduced innerSize to 0.

Update
Marked as "Fixed" by the client.
Addressed in: 3200b451d28c3f5f8289d807228bb623e3b42174 .

File(s) affected: Broker.sol

Description: Broker._placeSingleTickOrder() is used for both placing and canceling orders. During order cancelation, two paths exist:

Normal cancel (innerSize ≥ amount): reduce innerSize by amount; nonce is not incremented; partialFilledSize is
unchanged. If this takes innerSize to 0, the order tick nonce stays unchanged.
Partial-filled cancelation (innerSize < amount): set amount to innerSize ; set innerSize to 0; increment the order-tick nonce
(nonce0/nonce1); clear partialFilledSize .

The inconsistency is: Both paths can end with “no unfilled liquidity” (innerSize = 0), but:

Normal cancelation keeps the same nonce and leaves partialFilledSize
Partial-filled cancel bumps the nonce and clears partialFilledSize

This changes flow for users:

After normal cancel-to-zero: users can still pass the tickNonce <= userNonce check and later use cancel() or withdraw()
After partial-filled cancelation: stale userNonce fails the check (“Order filled”); users must use withdraw()

No critical problem arises from this inconsistency but it may impact the user experience.

Recommendation: When a normal cancel reduces innerSize to 0, also increment the corresponding nonce0/nonce1 and set
partialFilledSize = 0 so both cancel paths close the generation consistently. This makes behavior uniform and keeps cancel/withdraw

gating the same across cases.

OYSTR-6 Order Cancellation Griefing • Low Acknowledged

Update
Marked as "Acknowledged" by the client.
The client provided the following explanation:

 We believe that adding a time lock cannot completely prevent this problem. In addition, just-in-time
attacks are also common in AMM, so we decided that this situation does not require further
restrictions.

File(s) affected: OrderHandler.sol , SwapHandler.sol

Description: Order cancellation is permissionless for the order owner. This allows the owner to cancel just before execution, forcing swappers to
use AMM liquidity at less favorable prices.

Note this attack is only possible if the attacker can listen in on transactions before they land on chain.

Recommendation: Consider adding cancellation restrictions such as time locks, or document the risk clearly to users.

OYSTR-7
Missing divisibility check between tickSpacing and orderTickSpacing

• Low Fixed

Update
Marked as "Fixed" by the client.
Addressed in: ff5cfe416c01b25e8dd893c14a9d289ccde6c3d8 .

File(s) affected: MondayFactory.sol , MondayPool.sol

Description: The contracts validate that tickSpacing >= orderTickSpacing but do not enforce that tickSpacing is an exact multiple of
orderTickSpacing . Without this divisibility check, configurations can be created where the two spacings are misaligned, leaving calculations

that rely on predictable tick intervals inconsistent.

Recommendation: Add a check at pool creation to ensure divisibility:

require(_tickSpacing % orderTickSpacing == 0, "InvalidTickSpacing");

This guarantees that calculations based on tick alignment remain consistent.

OYSTR-8 Insufficient In-Code and Technical Documentation • Low Mitigated

Update
Substantial whitepaper improvements (279 insertions, 194 deletions) but minimal NatSpec additions to contracts; code documentation
remains sparse. The issue is marked "mitigated" because improvements to documentation are not substantial enough for a full fix,
though we recognize many improvements were made in this regard.

Update
Marked as "Fixed" by the client.
Addressed in: d53cd5b30116a33ef696fb53797d68e562e0bbaa .

File(s) affected: All Contracts

Description: The protocol includes a well-written and detailed whitepaper, but there is a gap between the theoretical design and the
implementation. Current documentation does not adequately:

Use NatSpec and inline code comments to explain contract behavior.
Map variables and functions in the codebase to their counterparts in the whitepaper.

Provide developer-focused technical documentation on how the whitepaper design is realized in code. This makes it harder for auditors
and developers to verify correctness or follow the implementation logic directly from the whitepaper.

Recommendation:
Increase NatSpec coverage for all public and critical functions.
Add inline code documentation clarifying variable purposes and design rationale.
Provide a technical guide that explicitly maps whitepaper concepts to code (e.g., which variables and functions implement specific
equations or mechanisms).
Ensure consistent terminology between the whitepaper, code, and documentation.

OYSTR-9
_maxNonceInRange() scans every tick instead of stepping by
orderTickSpacing

• Informational Fixed

Update
Marked as "Fixed" by the client.
Addressed in: dce0ffba19234ef51e26befc63f7e5fae2736d60 .

File(s) affected: LibOrder.sol

Description: _maxNonceInRange() linearly scans every tick between range bounds, even though only order ticks (separated by a constant
orderTickSpacing) can hold meaningful order state. This produces unnecessary SLOAD s and makes gas cost scale with the interval size

rather than the count of actual order ticks.

Recommendation: Iterate only over order ticks. Align the start to the first multiple in [lowerTick, upperTick) and step by
orderTickSpacing :

Alternatively, use the existing order-bitmaps to jump to initialized order ticks within the range, or maintain per-range aggregated max nonces to
avoid iteration entirely.

OYSTR-10 No Upper Limit for Fee Values • Informational Fixed

Update
Marked as "Fixed" by the client.
Addressed in: ecbad8bb01600b9ba4d14e375ba5847d2c9b8aa4 and 5b8164abdf10aaf746741facc07a43113b973c46 .

File(s) affected: config.sol

Description: The Config.resetOrderFee() function allows setting maker and taker fees for the entire protocol, but does not enforce any
upper limit on the values. It even allows to set fee values over 100% which may cause calculations to produce unexpected results.

Recommendation: Implement an upper limit on fee values. Since newMakerFee may be negative, the limit should be applied to its absolute
value.

OYSTR-11
Minimum Order Amount May Be Set for Uninitialized
Tokens

• Informational Acknowledged

Update
Marked as "Acknowledged" by the client.
The client provided the following explanation:

 The setMinOrderAmount() function in config.sol is designed to be able to change the minOrderAmount of a
token that has already been set.

File(s) affected: config.sol

Description: The Config.setMinOrderAmount() does not check if the provided token parameter is already initialized or not, and allows
setting min amount for any token address.

Recommendation: Consider ensuring the token is already initialized by checking if the existing value of minOrderAmount[token] is not 0.

OYSTR-12
Tick Spacing Exceeding 256 Ticks Creates Gaps in Order
Placement

• Informational Fixed

Update
Marked as "Fixed" by the client.
Addressed in: 275d06cc6ac3f3295ae6062f92c435bef8b3f4d2 .

File(s) affected: MondayFactory.sol , TickBitmap.sol

Description: The inner bitmap implementation which tracks order ticks restricts tick spacing to a maximum of 256. The
TickBitmap.flipTickWithBitmap() function calculates bit positions as the absolute difference between order ticks and swap ticks, with

bounds validation that reverts when this difference reaches 256 or greater. Tick spacings exceeding 256 create gaps in order placement
coverage in which placing orders becomes impossible.

Recommendation: Document the 256 tick spacing limitation and enforce it in the MondayFactory.enableFeeAmount() function by adding
validation to reject tick spacings greater than 256.

OYSTR-13 Misleading Event Emission • Informational Fixed

Update
Marked as "Fixed" by the client.
Addressed in: 2aecbf7332ac47944fcd8e10ccd8962b0150af54 and 024d4087c18cb908ac9cb4ca1cc078735db02f9c .

File(s) affected: config.sol

Description: The Config.addTokens() function emits the TokensAdded() event at the end. However, the value provided to the event is
the tokens array, which contains all existing tokens in the system, rather than the newly added tokens in the _tokens array.

Additionally, the logic of addTokens() allows this function to be called only for updating the minOrderAmount for tokens, rather than adding
new tokens, in which case emitting TokensAdded() is unnecessary. Ideally, this function would only be used for adding tokens, as the
setMinOrderAmount() function already exists for adding existing tokens.

Similarly, the Config.removeTokens() function suffers from the same issue when emitting the TokensRemoved() event.

Recommendation: Ensure that the correct set of tokens (i.e., the _tokens array) is emitted in these events.

Auditor Suggestions
S1 'Dead' Code Fixed

Update
Marked as "Fixed" by the client.
Addressed in: b96e0f9f843b9e4f36aa9423379adb4564c4e418 .

File(s) affected: TickBitmap.sol , LibMath.sol

Related Issue(s): SWC-131, SWC-135

Description: "Dead" code refers to code which is never executed and hence makes no impact on the final result of running a program. Dead code
raises a concern, since either the code is unnecessary or the necessary code's results were ignored.

TickBitmap.getSwapTick() is not used anywhere and also seems wrong since it does not handle the edge cases outlined in
flipTickWithBitMap() .
TickBitmap#L103-106 remove commented out code.
LibMath.sol from the whole file only LibMath.maxUint128() is used.
LibMath.maxUint128() is only used twice in the Broker contract and thus should be moved there.

Recommendation: We recommend to remove any unused code.

S2 Clarify Terminology Fixed

https://smartcontractsecurity.github.io/SWC-registry/docs/SWC-131
https://smartcontractsecurity.github.io/SWC-registry/docs/SWC-135

Update
Please note that several instances of swap tick still exists in tests and latex format white paper.

Update
Marked as "Fixed" by the client.
Addressed in: c12c07af7b2cdda15efe4308993f9d7a6a804a23 .

File(s) affected: Broker.sol

Description: The words swap tick and range tick in functions and variables are used as synonyms.

Recommendation: For clarity, choose one of the two terms and stick to it.

S3 Missing Input Validation Fixed

Update
All fixed, except for 2, which validate the config but not the wETH.

Update
Marked as "Fixed" by the client.
Addressed in: 99244c67864f124bf7ea9071db6453932244a08f .

File(s) affected: MondayFactory.sol , MondayPool.sol , OrderHandler.sol

Description: There are several key functions within the codebase that lack proper input parameter validations. A non-exhaustive list of such
function parameters is provided below:

1. The constructor of the MondayPool contract does not validate any of its parameters. Since these are assigned to immutable values, it is
especially important to validate these addresses against address(0) .

2. The constructor of the MondayFactory contract does not validate the _config and _weth parameters against address(0) .
3. The MondayFactory.setOwner() function does not validate the _owner address against address(0) .
4. The MondayFactory.setNewOrderTickSpacing() function does not validate the newOrderTickSpacing parameter against illegal

values such as 0 .
5. Add require(targetTick % int128(orderTickSpacing) == 0, 'Illegal Order Tick'); in the

OrderHandler._clearUserWithdraw() function to ensure the call does not fail silently, and the function remains consistent with other
functions in the contract.

Recommendation: Consider adding extra input validations throughout the code. Even for administrative functions, it is still recommended to
include input validations to ensure proper security. The above list highlights the most important functions that lack such validations.

S4 General Code Improvements Fixed

Update
Marked as "Fixed" by the client.
Addressed in: 109f4a6d3d46a5911163f19d6adea88beffbf465 .
The client provided the following explanation:

 Expect 2. The config contract is upgradeable, and the pool address may be used in the future.

File(s) affected: config.sol , MondayPool.sol , OrderHandler.sol , TickBitmap.sol

Description:
1. Fixed — In the Config.addTokens() function, add a validation to ensure that the sizes of the two input arrays _tokens and

_minOrderAmounts are equal.
2. N/A — Remove the pool address parameter from the two functions getOrderTakerFee() and getOrderMakerFee() in the

Config contract.
3. Fixed — Consider adding _disableInitializers() in the constructor of the MondayPool contract.
4. Fixed — In the OrderHandler.place() function, the isToken0 variable is introduced via bool isToken0 = size > 0 ? true
: false; . However, the same logic (size > 0 ? true : false) is later repeated in the code instead of using the local variable
isToken0 .

5. Fixed — In OrderHandler.place():L77~88 , the sequence of if and else branches is based on the size parameter. The last
else branch reverts if size is 0 . To improve code readability and gas consumption, you can add an input validation to ensure that

size is not 0 at the beginning of the function instead.
6. Fixed — In TickBitmap.flipTickWithBitmap() , the diff local variable is calculated via the abs() function, therefore it cannot

be negative, and the validation if (diff < 0 || diff >= 256) on line 54 is unnecessary. The same issue also exists in the
nextOrderTickWithinOneWord() function of the same library.

Recommendation: Consider applying the above suggestions to improve the general state of the code.

S5 Failing and Incomplete Test Suite Fixed

Update
As of most recent commit a90133ce52ced24190d1a478819842f4de1bbd5b the test suite results:

 959 passing (28s)

 20 pending

Update
Marked as "Fixed" by the client.
Addressed in: ea27000a0beb4d459a81b2ab4e3145a68891ae30 .
The client provided the following explanation:

 In fact, our main added process should be in forge test. However, due to the limitation of solc
compilation version, we encountered an unresolvable stack too deep error when running forge coverage.
All but one of the hardhat tests passed. I fixed this test in the commit. The snapshot test error will
be resolved after deleting the original snapshot file.

File(s) affected: tests

Description: The test suite spans all major files and contracts but is unreliable in its current state:
132 failing tests out of 1219 total (~10.83% failure rate).
20 pending tests not yet implemented.
No coverage report generated, preventing visibility into untested areas.
Multiple naming/parameter mismatches in error handling suggest the suite is not consistently run. This reduces confidence in the
correctness of the implementation and increases the risk of undetected bugs.

Recommendation: - Resolve failing and pending tests.
Generate and maintain coverage reports.
Ensure consistent execution of the suite as part of the development process.
Align error strings and parameter names between implementation and tests

Definitions
High severity – High-severity issues usually put a large number of users' sensitive information at risk, or are reasonably likely to lead to
catastrophic impact for client's reputation or serious financial implications for client and users.

Medium severity – Medium-severity issues tend to put a subset of users' sensitive information at risk, would be detrimental for the client's
reputation if exploited, or are reasonably likely to lead to moderate financial impact.

Low severity – The risk is relatively small and could not be exploited on a recurring basis, or is a risk that the client has indicated is low
impact in view of the client's business circumstances.

Informational – The issue does not pose an immediate risk, but is relevant to security best practices or Defence in Depth.

Undetermined – The impact of the issue is uncertain.

Fixed – Adjusted program implementation, requirements or constraints to eliminate the risk.

Mitigated – Implemented actions to minimize the impact or likelihood of the risk.

Acknowledged – The issue remains in the code but is a result of an intentional business or design decision. As such, it is supposed to be
addressed outside the programmatic means, such as: 1) comments, documentation, README, FAQ; 2) business processes; 3) analyses
showing that the issue shall have no negative consequences in practice (e.g., gas analysis, deployment settings).

Test Suite Results

Test suite is comprehensive and spans all major files and contracts. There are two majour areas of concern:

1. There are a total of 132 failing tests (1067 passing, and 20 pending). This means approximately 10.83% of the test suite is failing. This should
be immediately and urgently addressed by the team.

Note, though coverage data is lacking this reflects a limitation of the solc compiler at the moment rather than the issues with the test suite.

FIX-REVIEW UPDATE: New test results:

 959 passing (28s)

 20 pending

All tests are successfully passing, a substantial improvement. Furthermore, we have been made aware of an additional foundry-based test suite,
whose output is now appended immediately below the hardhat tests.

 Creating Typechain artifacts in directory typechain for target ethers-v5

Successfully generated Typechain artifacts!

 BitMath

 #mostSignificantBit

 ✔ 0

 ✔ 1

 ✔ 2

 ✔ all powers of 2 (123ms)

 ✔ uint256(-1)

 ✔ gas cost of smaller number

 ✔ gas cost of max uint128

 ✔ gas cost of max uint256

 #leastSignificantBit

 ✔ 0

 ✔ 1

 ✔ 2

 ✔ all powers of 2 (94ms)

 ✔ uint256(-1)

 ✔ gas cost of smaller number

 ✔ gas cost of max uint128

 ✔ gas cost of max uint256

 FullMath

 - check a bunch of random inputs against JS implementation

 #mulDiv

 ✔ reverts if denominator is 0

 ✔ reverts if denominator is 0 and numerator overflows

 ✔ reverts if output overflows uint256

 ✔ reverts if output overflows uint256

 ✔ reverts on overflow with all max inputs

 ✔ all max inputs

 ✔ accurate without phantom overflow

 ✔ accurate with phantom overflow

 ✔ accurate with phantom overflow and repeating decimal

 #mulDivRoundingUp

 ✔ reverts if denominator is 0

 ✔ reverts if denominator is 0 and numerator overflows

 ✔ reverts if output overflows uint256

 ✔ reverts on overflow with all max inputs

 ✔ reverts if mulDiv overflows 256 bits after rounding up

 ✔ reverts if mulDiv overflows 256 bits after rounding up case 2

 ✔ all max inputs

 ✔ accurate without phantom overflow

 ✔ accurate with phantom overflow

 ✔ accurate with phantom overflow and repeating decimal

 LiquidityMath

 #addDelta

 ✔ 1 + 0

 ✔ 1 + -1

 ✔ 1 + 1

 ✔ 2**128-15 + 15 overflows

 ✔ 0 + -1 underflows

 ✔ 3 + -4 underflows

 ✔ gas add

 ✔ gas sub

 NoDelegateCall

 ✔ runtime overhead

 ✔ proxy can call the method without the modifier

 ✔ proxy cannot call the method with the modifier

 ✔ can call the method that calls into a private method with the modifier

 ✔ proxy cannot call the method that calls a private method with the modifier

 Oracle

 #initialize

 ✔ index is 0

 ✔ cardinality is 1

 ✔ cardinality next is 1

 ✔ sets first slot timestamp only

 ✔ gas

 #grow

 ✔ increases the cardinality next for the first call

 ✔ does not touch the first slot

 ✔ is no op if oracle is already gte that size

 ✔ adds data to all the slots

 ✔ grow after wrap

 ✔ gas for growing by 1 slot when index == cardinality - 1

 ✔ gas for growing by 10 slots when index == cardinality - 1

 ✔ gas for growing by 1 slot when index != cardinality - 1

 ✔ gas for growing by 10 slots when index != cardinality - 1

 #write

 ✔ single element array gets overwritten

 ✔ does nothing if time has not changed

 ✔ writes an index if time has changed

 ✔ grows cardinality when writing past

 ✔ wraps around

 ✔ accumulates liquidity

 #observe

 before initialization

 ✔ fails before initialize

 ✔ fails if an older observation does not exist

 ✔ does not fail across overflow boundary

 ✔ interpolates correctly at max liquidity

 ✔ interpolates correctly at min liquidity

 ✔ interpolates the same as 0 liquidity for 1 liquidity

 ✔ interpolates correctly across uint32 seconds boundaries

 ✔ single observation at current time

 ✔ single observation in past but not earlier than secondsAgo

 ✔ single observation in past at exactly seconds ago

 ✔ single observation in past counterfactual in past

 ✔ single observation in past counterfactual now

 ✔ two observations in chronological order 0 seconds ago exact

 ✔ two observations in chronological order 0 seconds ago counterfactual

 ✔ two observations in chronological order seconds ago is exactly on first observation

 ✔ two observations in chronological order seconds ago is between first and second

 ✔ two observations in reverse order 0 seconds ago exact

 ✔ two observations in reverse order 0 seconds ago counterfactual

 ✔ two observations in reverse order seconds ago is exactly on first observation

 ✔ two observations in reverse order seconds ago is between first and second

 ✔ can fetch multiple observations

 ✔ gas for observe since most recent

 ✔ gas for single observation at current time

 ✔ gas for single observation at current time counterfactually computed

 initialized with 5 observations with starting time of 5

 ✔ index, cardinality, cardinality next

 ✔ latest observation same time as latest

 ✔ latest observation 5 seconds after latest

 ✔ current observation 5 seconds after latest

 ✔ between latest observation and just before latest observation at same time as latest

 ✔ between latest observation and just before latest observation after the latest observation

 ✔ older than oldest reverts

 ✔ oldest observation

 ✔ oldest observation after some time

 ✔ fetch many values

 ✔ gas all of last 20 seconds

 ✔ gas latest equal

 ✔ gas latest transform

 ✔ gas oldest

 ✔ gas between oldest and oldest + 1

 ✔ gas middle

 initialized with 5 observations with starting time of 4294967291

 ✔ index, cardinality, cardinality next

 ✔ latest observation same time as latest

 ✔ latest observation 5 seconds after latest

 ✔ current observation 5 seconds after latest

 ✔ between latest observation and just before latest observation at same time as latest

 ✔ between latest observation and just before latest observation after the latest observation

 ✔ older than oldest reverts

 ✔ oldest observation

 ✔ oldest observation after some time

 ✔ fetch many values

 ✔ gas all of last 20 seconds

 ✔ gas latest equal

 ✔ gas latest transform

 ✔ gas oldest

 ✔ gas between oldest and oldest + 1

 ✔ gas middle

 full oracle

 - has max cardinality next

 - has max cardinality

 - index wrapped around

 - can observe into the ordered portion with exact seconds ago

 - can observe into the ordered portion with unexact seconds ago

 - can observe at exactly the latest observation

 - can observe at exactly the latest observation after some time passes

 - can observe after the latest observation counterfactual

 - can observe into the unordered portion of array at exact seconds ago of observation

 - can observe into the unordered portion of array at seconds ago between observations

 - can observe the oldest observation 13*65534 seconds ago

 - can observe the oldest observation 13*65534 + 5 seconds ago if time has elapsed

 - gas cost of observe(0)

 - gas cost of observe(200 * 13)

 - gas cost of observe(200 * 13 + 5)

 - gas cost of observe(0) after 5 seconds

 - gas cost of observe(5) after 5 seconds

 - gas cost of observe(oldest)

 - gas cost of observe(oldest) after 5 seconds

 SqrtPriceMath

 #getNextSqrtPriceFromInput

 ✔ fails if price is zero

 ✔ fails if liquidity is zero

 ✔ fails if input amount overflows the price

 ✔ any input amount cannot underflow the price

 ✔ returns input price if amount in is zero and zeroForOne = true

 ✔ returns input price if amount in is zero and zeroForOne = false

 ✔ returns the minimum price for max inputs

 ✔ input amount of 0.1 token1

 ✔ input amount of 0.1 token0

 ✔ amountIn > type(uint96).max and zeroForOne = true

 ✔ can return 1 with enough amountIn and zeroForOne = true

 ✔ zeroForOne = true gas

 ✔ zeroForOne = false gas

 #getNextSqrtPriceFromOutput

 ✔ fails if price is zero

 ✔ fails if liquidity is zero

 ✔ fails if output amount is exactly the virtual reserves of token0

 ✔ fails if output amount is greater than virtual reserves of token0

 ✔ fails if output amount is greater than virtual reserves of token1

 ✔ fails if output amount is exactly the virtual reserves of token1

 ✔ succeeds if output amount is just less than the virtual reserves of token1

 ✔ puzzling echidna test

 ✔ returns input price if amount in is zero and zeroForOne = true

 ✔ returns input price if amount in is zero and zeroForOne = false

 ✔ output amount of 0.1 token1

 ✔ output amount of 0.1 token1

 ✔ reverts if amountOut is impossible in zero for one direction

 ✔ reverts if amountOut is impossible in one for zero direction

 ✔ zeroForOne = true gas

 ✔ zeroForOne = false gas

 #getAmount0Delta

 ✔ returns 0 if liquidity is 0

 ✔ returns 0 if prices are equal

 ✔ returns 0.1 amount1 for price of 1 to 1.21

 ✔ works for prices that overflow

 ✔ gas cost for amount0 where roundUp = true

 ✔ gas cost for amount0 where roundUp = true

 #getAmount1Delta

 ✔ returns 0 if liquidity is 0

 ✔ returns 0 if prices are equal

 ✔ returns 0.1 amount1 for price of 1 to 1.21

 ✔ gas cost for amount0 where roundUp = true

 ✔ gas cost for amount0 where roundUp = false

 swap computation

 ✔ sqrtP * sqrtQ overflows

 SwapMath

 #computeSwapStep

 ✔ exact amount in that gets capped at price target in one for zero

 ✔ exact amount out that gets capped at price target in one for zero

 ✔ exact amount in that is fully spent in one for zero

 ✔ exact amount out that is fully received in one for zero

 ✔ amount out is capped at the desired amount out

 ✔ target price of 1 uses partial input amount

 ✔ entire input amount taken as fee

 ✔ handles intermediate insufficient liquidity in zero for one exact output case

 ✔ handles intermediate insufficient liquidity in one for zero exact output case

 gas

 ✔ swap one for zero exact in capped

 ✔ swap zero for one exact in capped

 ✔ swap one for zero exact out capped

 ✔ swap zero for one exact out capped

 ✔ swap one for zero exact in partial

 ✔ swap zero for one exact in partial

 ✔ swap one for zero exact out partial

 ✔ swap zero for one exact out partial

 Tick

 #tickSpacingToMaxLiquidityPerTick

 ✔ returns the correct value for low fee

 ✔ returns the correct value for medium fee

 ✔ returns the correct value for high fee

 ✔ returns the correct value for entire range

 ✔ returns the correct value for 2302

 #getFeeGrowthInside

 ✔ returns all for two uninitialized ticks if tick is inside

 ✔ returns 0 for two uninitialized ticks if tick is above

 ✔ returns 0 for two uninitialized ticks if tick is below

 ✔ subtracts upper tick if below

 ✔ subtracts lower tick if above

 ✔ subtracts upper and lower tick if inside

 ✔ works correctly with overflow on inside tick

 #update

 ✔ flips from zero to nonzero

 ✔ does not flip from nonzero to greater nonzero

 ✔ flips from nonzero to zero

 ✔ does not flip from nonzero to lesser nonzero

 ✔ does not flip from nonzero to lesser nonzero

 ✔ reverts if total liquidity gross is greater than max

 ✔ nets the liquidity based on upper flag

 ✔ reverts on overflow liquidity gross

 ✔ assumes all growth happens below ticks lte current tick

 ✔ does not set any growth fields if tick is already initialized

 ✔ does not set any growth fields for ticks gt current tick

 #clear

 ✔ deletes all the data in the tick

 #cross

 ✔ flips the growth variables

 ✔ two flips are no op

 TickBitmap

 #isInitialized

 ✔ is false at first

 ✔ is flipped by #flipTick

 ✔ is flipped back by #flipTick

 ✔ is not changed by another flip to a different tick

 ✔ is not changed by another flip to a different tick on another word

 #flipTick

 ✔ flips only the specified tick

 ✔ reverts only itself

 ✔ gas cost of flipping first tick in word to initialized

 ✔ gas cost of flipping second tick in word to initialized

 ✔ gas cost of flipping a tick that results in deleting a word

 #nextInitializedTickWithinOneWord

 lte = false

 ✔ returns tick to right if at initialized tick

 ✔ returns tick to right if at initialized tick

 ✔ returns the tick directly to the right

 ✔ returns the tick directly to the right

 ✔ returns the next words initialized tick if on the right boundary

 ✔ returns the next words initialized tick if on the right boundary

 ✔ returns the next initialized tick from the next word

 ✔ does not exceed boundary

 ✔ skips entire word

 ✔ skips half word

 ✔ gas cost on boundary

 ✔ gas cost just below boundary

 ✔ gas cost for entire word

 lte = true

 ✔ returns same tick if initialized

 ✔ returns tick directly to the left of input tick if not initialized

 ✔ will not exceed the word boundary

 ✔ at the word boundary

 ✔ word boundary less 1 (next initialized tick in next word)

 ✔ word boundary

 ✔ entire empty word

 ✔ halfway through empty word

 ✔ boundary is initialized

 ✔ gas cost on boundary

 ✔ gas cost just below boundary

 ✔ gas cost for entire word

 TickMath

 #getSqrtRatioAtTick

 ✔ throws for too low

 ✔ throws for too low

 ✔ min tick

 ✔ min tick +1

 ✔ max tick - 1

 ✔ min tick ratio is less than js implementation

 ✔ max tick ratio is greater than js implementation

 ✔ max tick

 tick -50

 ✔ is at most off by 1/100th of a bips

 ✔ result

 ✔ gas

 tick 50

 ✔ is at most off by 1/100th of a bips

 ✔ result

 ✔ gas

 tick -100

 ✔ is at most off by 1/100th of a bips

 ✔ result

 ✔ gas

 tick 100

 ✔ is at most off by 1/100th of a bips

 ✔ result

 ✔ gas

 tick -250

 ✔ is at most off by 1/100th of a bips

 ✔ result

 ✔ gas

 tick 250

 ✔ is at most off by 1/100th of a bips

 ✔ result

 ✔ gas

 tick -500

 ✔ is at most off by 1/100th of a bips

 ✔ result

 ✔ gas

 tick 500

 ✔ is at most off by 1/100th of a bips

 ✔ result

 ✔ gas

 tick -1000

 ✔ is at most off by 1/100th of a bips

 ✔ result

 ✔ gas

 tick 1000

 ✔ is at most off by 1/100th of a bips

 ✔ result

 ✔ gas

 tick -2500

 ✔ is at most off by 1/100th of a bips

 ✔ result

 ✔ gas

 tick 2500

 ✔ is at most off by 1/100th of a bips

 ✔ result

 ✔ gas

 tick -3000

 ✔ is at most off by 1/100th of a bips

 ✔ result

 ✔ gas

 tick 3000

 ✔ is at most off by 1/100th of a bips

 ✔ result

 ✔ gas

 tick -4000

 ✔ is at most off by 1/100th of a bips

 ✔ result

 ✔ gas

 tick 4000

 ✔ is at most off by 1/100th of a bips

 ✔ result

 ✔ gas

 tick -5000

 ✔ is at most off by 1/100th of a bips

 ✔ result

 ✔ gas

 tick 5000

 ✔ is at most off by 1/100th of a bips

 ✔ result

 ✔ gas

 tick -50000

 ✔ is at most off by 1/100th of a bips

 ✔ result

 ✔ gas

 tick 50000

 ✔ is at most off by 1/100th of a bips

 ✔ result

 ✔ gas

 tick -150000

 ✔ is at most off by 1/100th of a bips

 ✔ result

 ✔ gas

 tick 150000

 ✔ is at most off by 1/100th of a bips

 ✔ result

 ✔ gas

 tick -250000

 ✔ is at most off by 1/100th of a bips

 ✔ result

 ✔ gas

 tick 250000

 ✔ is at most off by 1/100th of a bips

 ✔ result

 ✔ gas

 tick -500000

 ✔ is at most off by 1/100th of a bips

 ✔ result

 ✔ gas

 tick 500000

 ✔ is at most off by 1/100th of a bips

 ✔ result

 ✔ gas

 tick -738203

 ✔ is at most off by 1/100th of a bips

 ✔ result

 ✔ gas

 tick 738203

 ✔ is at most off by 1/100th of a bips

 ✔ result

 ✔ gas

 #MIN_SQRT_RATIO

 ✔ equals #getSqrtRatioAtTick(MIN_TICK)

 #MAX_SQRT_RATIO

 ✔ equals #getSqrtRatioAtTick(MAX_TICK)

 #getTickAtSqrtRatio

 ✔ throws for too low

 ✔ throws for too high

 ✔ ratio of min tick

 ✔ ratio of min tick + 1

 ✔ ratio of max tick - 1

 ✔ ratio closest to max tick

 ratio 4295128739

 ✔ is at most off by 1

 ✔ ratio is between the tick and tick+1

 ✔ result

 ✔ gas

 ratio 79228162514264337593543950336000000

 ✔ is at most off by 1

 ✔ ratio is between the tick and tick+1

 ✔ result

 ✔ gas

 ratio 79228162514264337593543950336000

 ✔ is at most off by 1

 ✔ ratio is between the tick and tick+1

 ✔ result

 ✔ gas

 ratio 9903520314283042199192993792

 ✔ is at most off by 1

 ✔ ratio is between the tick and tick+1

 ✔ result

 ✔ gas

 ratio 28011385487393069959365969113

 ✔ is at most off by 1

 ✔ ratio is between the tick and tick+1

 ✔ result

 ✔ gas

 ratio 56022770974786139918731938227

 ✔ is at most off by 1

 ✔ ratio is between the tick and tick+1

 ✔ result

 ✔ gas

 ratio 79228162514264337593543950336

 ✔ is at most off by 1

 ✔ ratio is between the tick and tick+1

 ✔ result

 ✔ gas

 ratio 112045541949572279837463876454

 ✔ is at most off by 1

 ✔ ratio is between the tick and tick+1

 ✔ result

 ✔ gas

 ratio 224091083899144559674927752909

 ✔ is at most off by 1

 ✔ ratio is between the tick and tick+1

 ✔ result

 ✔ gas

 ratio 633825300114114700748351602688

 ✔ is at most off by 1

 ✔ ratio is between the tick and tick+1

 ✔ result

 ✔ gas

 ratio 79228162514264337593543950

 ✔ is at most off by 1

 ✔ ratio is between the tick and tick+1

 ✔ result

 ✔ gas

 ratio 79228162514264337593543

 ✔ is at most off by 1

 ✔ ratio is between the tick and tick+1

 ✔ result

 ✔ gas

 ratio 1461446703485210103287273052203988822378723970341

 ✔ is at most off by 1

 ✔ ratio is between the tick and tick+1

 ✔ result

 ✔ gas

 UniswapV3Factory

 ✔ owner is deployer

 ✔ factory bytecode size

 ✔ pool bytecode size

 ✔ initial enabled fee amounts

 #createPool

 ✔ succeeds for low fee pool

 ✔ succeeds for medium fee pool

 ✔ succeeds for high fee pool

 ✔ succeeds if tokens are passed in reverse

 ✔ fails if token a == token b

 ✔ fails if token a is 0 or token b is 0

 ✔ fails if fee amount is not enabled

 ✔ gas

 #setOwner

 ✔ fails if caller is not owner

 ✔ updates owner

 ✔ emits event

 ✔ cannot be called by original owner

 #enableFeeAmount

 ✔ fails if caller is not owner

 ✔ fails if fee is too great

 ✔ fails if tick spacing is too small

 ✔ fails if tick spacing is too large

 ✔ fails if already initialized

 ✔ sets the fee amount in the mapping

 ✔ emits an event

 ✔ enables pool creation

 UniswapV3Pool arbitrage tests

 protocol fee = 0;

 passive liquidity of 0.010000

 exact input of 10e18 token0 with starting price of 1.0 and true price of 0.98

 ✔ not sandwiched

 ✔ sandwiched with swap to execution price then mint max liquidity/target/burn max liquidity

(60ms)

 ✔ backrun to true price after swap only

 exact input of 10e18 token0 with starting price of 1.0 and true price of 1.01

 ✔ not sandwiched

 ✔ sandwiched with swap to execution price then mint max liquidity/target/burn max liquidity

(65ms)

 ✔ backrun to true price after swap only

 passive liquidity of 1.0000

 exact input of 10e18 token0 with starting price of 1.0 and true price of 0.98

 ✔ not sandwiched

 ✔ sandwiched with swap to execution price then mint max liquidity/target/burn max liquidity

(59ms)

 ✔ backrun to true price after swap only

 exact input of 10e18 token0 with starting price of 1.0 and true price of 1.01

 ✔ not sandwiched

 ✔ sandwiched with swap to execution price then mint max liquidity/target/burn max liquidity

(62ms)

 ✔ backrun to true price after swap only

 passive liquidity of 10.000

 exact input of 10e18 token0 with starting price of 1.0 and true price of 0.98

 ✔ not sandwiched

 ✔ sandwiched with swap to execution price then mint max liquidity/target/burn max liquidity

(57ms)

 ✔ backrun to true price after swap only

 exact input of 10e18 token0 with starting price of 1.0 and true price of 1.01

 ✔ not sandwiched

 ✔ sandwiched with swap to execution price then mint max liquidity/target/burn max liquidity

(63ms)

 ✔ backrun to true price after swap only

 passive liquidity of 100.00

 exact input of 10e18 token0 with starting price of 1.0 and true price of 0.98

 ✔ not sandwiched

 ✔ sandwiched with swap to execution price then mint max liquidity/target/burn max liquidity

(56ms)

 ✔ backrun to true price after swap only

 exact input of 10e18 token0 with starting price of 1.0 and true price of 1.01

 ✔ not sandwiched

 ✔ sandwiched with swap to execution price then mint max liquidity/target/burn max liquidity

(71ms)

 ✔ backrun to true price after swap only (48ms)

 protocol fee = 6;

 passive liquidity of 0.010000

 exact input of 10e18 token0 with starting price of 1.0 and true price of 0.98

 ✔ not sandwiched

 ✔ sandwiched with swap to execution price then mint max liquidity/target/burn max liquidity

(60ms)

 ✔ backrun to true price after swap only

 exact input of 10e18 token0 with starting price of 1.0 and true price of 1.01

 ✔ not sandwiched

 ✔ sandwiched with swap to execution price then mint max liquidity/target/burn max liquidity

(115ms)

 ✔ backrun to true price after swap only

 passive liquidity of 1.0000

 exact input of 10e18 token0 with starting price of 1.0 and true price of 0.98

 ✔ not sandwiched

 ✔ sandwiched with swap to execution price then mint max liquidity/target/burn max liquidity

(62ms)

 ✔ backrun to true price after swap only

 exact input of 10e18 token0 with starting price of 1.0 and true price of 1.01

 ✔ not sandwiched

 ✔ sandwiched with swap to execution price then mint max liquidity/target/burn max liquidity

(64ms)

 ✔ backrun to true price after swap only

 passive liquidity of 10.000

 exact input of 10e18 token0 with starting price of 1.0 and true price of 0.98

 ✔ not sandwiched

 ✔ sandwiched with swap to execution price then mint max liquidity/target/burn max liquidity

(204ms)

 ✔ backrun to true price after swap only

 exact input of 10e18 token0 with starting price of 1.0 and true price of 1.01

 ✔ not sandwiched

 ✔ sandwiched with swap to execution price then mint max liquidity/target/burn max liquidity

(85ms)

 ✔ backrun to true price after swap only

 passive liquidity of 100.00

 exact input of 10e18 token0 with starting price of 1.0 and true price of 0.98

 ✔ not sandwiched

 ✔ sandwiched with swap to execution price then mint max liquidity/target/burn max liquidity

(60ms)

 ✔ backrun to true price after swap only

 exact input of 10e18 token0 with starting price of 1.0 and true price of 1.01

 ✔ not sandwiched

 ✔ sandwiched with swap to execution price then mint max liquidity/target/burn max liquidity

(65ms)

 ✔ backrun to true price after swap only

 UniswapV3Pool gas tests

 fee is off

 #swapExact0For1

 ✔ first swap in block with no tick movement

 ✔ first swap in block moves tick, no initialized crossings

 ✔ second swap in block with no tick movement

 ✔ second swap in block moves tick, no initialized crossings

 ✔ first swap in block, large swap, no initialized crossings

 ✔ first swap in block, large swap crossing several initialized ticks

 ✔ first swap in block, large swap crossing a single initialized tick

 ✔ second swap in block, large swap crossing several initialized ticks (38ms)

 ✔ second swap in block, large swap crossing a single initialized tick

 ✔ large swap crossing several initialized ticks after some time passes

 ✔ large swap crossing several initialized ticks second time after some time passes (45ms)

 #mint

 around current price

 ✔ new position mint first in range

 ✔ add to position existing

 ✔ second position in same range

 ✔ add to position after some time passes

 below current price

 ✔ new position mint first in range

 ✔ add to position existing

 ✔ second position in same range

 ✔ add to position after some time passes

 above current price

 ✔ new position mint first in range

 ✔ add to position existing

 ✔ second position in same range

 ✔ add to position after some time passes

 #burn

 around current price

 ✔ burn when only position using ticks

 ✔ partial position burn

 ✔ entire position burn but other positions are using the ticks

 ✔ burn entire position after some time passes

 below current price

 ✔ burn when only position using ticks

 ✔ partial position burn

 ✔ entire position burn but other positions are using the ticks

 ✔ burn entire position after some time passes

 above current price

 ✔ burn when only position using ticks

 ✔ partial position burn

 ✔ entire position burn but other positions are using the ticks

 ✔ burn entire position after some time passes

 #poke

 ✔ best case

 #collect

 ✔ close to worst case

 #increaseObservationCardinalityNext

 ✔ grow by 1 slot

 ✔ no op

 #snapshotCumulativesInside

 ✔ tick inside

 ✔ tick above

 ✔ tick below

 fee is on

 #swapExact0For1

 ✔ first swap in block with no tick movement

 ✔ first swap in block moves tick, no initialized crossings

 ✔ second swap in block with no tick movement

 ✔ second swap in block moves tick, no initialized crossings

 ✔ first swap in block, large swap, no initialized crossings

 ✔ first swap in block, large swap crossing several initialized ticks

 ✔ first swap in block, large swap crossing a single initialized tick

 ✔ second swap in block, large swap crossing several initialized ticks

 ✔ second swap in block, large swap crossing a single initialized tick

 ✔ large swap crossing several initialized ticks after some time passes (40ms)

 ✔ large swap crossing several initialized ticks second time after some time passes (44ms)

 #mint

 around current price

 ✔ new position mint first in range

 ✔ add to position existing

 ✔ second position in same range

 ✔ add to position after some time passes

 below current price

 ✔ new position mint first in range

 ✔ add to position existing

 ✔ second position in same range

 ✔ add to position after some time passes

 above current price

 ✔ new position mint first in range

 ✔ add to position existing

 ✔ second position in same range

 ✔ add to position after some time passes

 #burn

 around current price

 ✔ burn when only position using ticks

 ✔ partial position burn

 ✔ entire position burn but other positions are using the ticks

 ✔ burn entire position after some time passes

 below current price

 ✔ burn when only position using ticks

 ✔ partial position burn

 ✔ entire position burn but other positions are using the ticks

 ✔ burn entire position after some time passes

 above current price

 ✔ burn when only position using ticks

 ✔ partial position burn

 ✔ entire position burn but other positions are using the ticks

 ✔ burn entire position after some time passes

 #poke

 ✔ best case

 #collect

 ✔ close to worst case

 #increaseObservationCardinalityNext

 ✔ grow by 1 slot

 ✔ no op

 #snapshotCumulativesInside

 ✔ tick inside

 ✔ tick above

 ✔ tick below

 UniswapV3Pool

 ✔ constructor initializes immutables

 ✔ tick transition cannot run twice if zero for one swap ends at fractional price just below tick

(74ms)

 #initialize

 ✔ fails if already initialized

 ✔ fails if starting price is too low

 ✔ fails if starting price is too high

 ✔ can be initialized at MIN_SQRT_RATIO

 ✔ can be initialized at MAX_SQRT_RATIO - 1

 ✔ sets initial variables

 ✔ initializes the first observations slot

 ✔ emits a Initialized event with the input tick

 #increaseObservationCardinalityNext

 ✔ can only be called after initialize

 ✔ emits an event including both old and new

 ✔ does not emit an event for no op call

 ✔ does not change cardinality next if less than current

 ✔ increases cardinality and cardinality next first time

 #mint

 ✔ fails if not initialized

 after initialization

 ✔ protocol fees accumulate as expected during swap

 ✔ positions are protected before protocol fee is turned on

 ✔ poke is not allowed on uninitialized position (87ms)

 failure cases

 ✔ fails if tickLower greater than tickUpper

 ✔ fails if tickLower less than min tick

 ✔ fails if tickUpper greater than max tick

 ✔ fails if amount exceeds the max

 ✔ fails if total amount at tick exceeds the max (41ms)

 ✔ fails if amount is 0

 success cases

 ✔ initial balances

 ✔ initial tick

 above current price

 ✔ transfers token0 only

 ✔ max tick with max leverage

 ✔ works for max tick

 ✔ removing works

 ✔ adds liquidity to liquidityGross (54ms)

 ✔ removes liquidity from liquidityGross

 ✔ clears tick lower if last position is removed

 ✔ clears tick upper if last position is removed

 ✔ only clears the tick that is not used at all

 ✔ does not write an observation

 including current price

 ✔ price within range: transfers current price of both tokens

 ✔ initializes lower tick

 ✔ initializes upper tick

 ✔ works for min/max tick (186ms)

 ✔ removing works

 ✔ writes an observation

 below current price

 ✔ transfers token1 only

 ✔ min tick with max leverage

 ✔ works for min tick

 ✔ removing works

 ✔ does not write an observation

 #burn

 ✔ does not clear the position fee growth snapshot if no more liquidity (39ms)

 ✔ clears the tick if its the last position using it

 ✔ clears only the lower tick if upper is still used

 ✔ clears only the upper tick if lower is still used

 #observe

 ✔ current tick accumulator increases by tick over time

 ✔ current tick accumulator after single swap

 ✔ current tick accumulator after two swaps

 miscellaneous mint tests

 ✔ mint to the right of the current price

 ✔ mint to the left of the current price

 ✔ mint within the current price

 ✔ cannot remove more than the entire position

 ✔ collect fees within the current price after swap (43ms)

 post-initialize at medium fee

 k (implicit)

 ✔ returns 0 before initialization

 post initialized

 ✔ returns initial liquidity

 ✔ returns in supply in range

 ✔ excludes supply at tick above current tick

 ✔ excludes supply at tick below current tick

 ✔ updates correctly when exiting range

 ✔ updates correctly when entering range

 limit orders

 ✔ limit selling 0 for 1 at tick 0 thru 1

 ✔ limit selling 1 for 0 at tick 0 thru -1

 fee is on

 ✔ limit selling 0 for 1 at tick 0 thru 1

 ✔ limit selling 1 for 0 at tick 0 thru -1

 #collect

 ✔ works with multiple LPs

 works across large increases

 ✔ works just before the cap binds

 ✔ works just after the cap binds

 ✔ works well after the cap binds

 works across overflow boundaries

 ✔ token0

 ✔ token1

 ✔ token0 and token1

 #feeProtocol

 ✔ is initially set to 0

 ✔ can be changed by the owner

 ✔ cannot be changed out of bounds

 ✔ cannot be changed by addresses that are not owner

 ✔ position owner gets full fees when protocol fee is off

 ✔ swap fees accumulate as expected (0 for 1)

 ✔ swap fees accumulate as expected (1 for 0) (38ms)

 ✔ position owner gets partial fees when protocol fee is on

 ✔ fees collected by lp after two swaps should be double one swap

 ✔ fees collected after two swaps with fee turned on in middle are fees from last swap (not

confiscatory)

 ✔ fees collected by lp after two swaps with intermediate withdrawal

 #collectProtocol

 ✔ returns 0 if no fees

 ✔ can collect fees

 ✔ fees collected can differ between token0 and token1

 #tickSpacing

 tickSpacing = 12

 post initialize

 ✔ mint can only be called for multiples of 12

 ✔ mint can be called with multiples of 12

 ✔ swapping across gaps works in 1 for 0 direction (38ms)

 ✔ swapping across gaps works in 0 for 1 direction

 #flash

 ✔ fails if not initialized

 ✔ fails if no liquidity

 after liquidity added

 fee off

 ✔ emits an event

 ✔ transfers the amount0 to the recipient

 ✔ transfers the amount1 to the recipient

 ✔ can flash only token0

 ✔ can flash only token1

 ✔ can flash entire token balance

 ✔ no-op if both amounts are 0

 ✔ fails if flash amount is greater than token balance

 ✔ calls the flash callback on the sender with correct fee amounts

 ✔ increases the fee growth by the expected amount

 ✔ fails if original balance not returned in either token

 ✔ fails if underpays either token

 ✔ allows donating token0

 ✔ allows donating token1

 ✔ allows donating token0 and token1 together

 fee on

 ✔ emits an event

 ✔ increases the fee growth by the expected amount

 ✔ allows donating token0

 ✔ allows donating token1

 ✔ allows donating token0 and token1 together

 #increaseObservationCardinalityNext

 ✔ cannot be called before initialization

 after initialization

 ✔ oracle starting state after initialization

 ✔ increases observation cardinality next

 ✔ is no op if target is already exceeded

 #setFeeProtocol

 ✔ can only be called by factory owner

 ✔ fails if fee is lt 4 or gt 10

 ✔ succeeds for fee of 4

 ✔ succeeds for fee of 10

 ✔ sets protocol fee

 ✔ can change protocol fee

 ✔ can turn off protocol fee

 ✔ emits an event when turned on

 ✔ emits an event when turned off

 ✔ emits an event when changed

 ✔ emits an event when unchanged

 #lock

 ✔ cannot reenter from swap callback

 #snapshotCumulativesInside

 ✔ throws if ticks are in reverse order

 ✔ throws if ticks are the same

 ✔ throws if tick lower is too low

 ✔ throws if tick upper is too high

 ✔ throws if tick lower is not initialized

 ✔ throws if tick upper is not initialized

 ✔ is zero immediately after initialize

 ✔ increases by expected amount when time elapses in the range

 ✔ does not account for time increase above range

 ✔ does not account for time increase below range

 ✔ time increase below range is not counted

 ✔ time increase above range is not counted

 ✔ positions minted after time spent

 ✔ overlapping liquidity is aggregated

 ✔ relative behavior of snapshots

 fees overflow scenarios

 ✔ up to max uint 128

 ✔ overflow max uint 128

 ✔ overflow max uint 128 after poke burns fees owed to 0

 ✔ two positions at the same snapshot (41ms)

 ✔ two positions 1 wei of fees apart overflows exactly once (52ms)

 swap underpayment tests

 ✔ underpay zero for one and exact in

 ✔ pay in the wrong token zero for one and exact in

 ✔ overpay zero for one and exact in

 ✔ underpay zero for one and exact out

 ✔ pay in the wrong token zero for one and exact out

 ✔ overpay zero for one and exact out

 ✔ underpay one for zero and exact in

 ✔ pay in the wrong token one for zero and exact in

 ✔ overpay one for zero and exact in

 ✔ underpay one for zero and exact out

 ✔ pay in the wrong token one for zero and exact out

 ✔ overpay one for zero and exact out

 UniswapV3Pool swap tests

 low fee, 1:1 price, 2e18 max range liquidity

 ✔ swap exactly 1.0000 token0 for token1

 ✔ swap exactly 1.0000 token1 for token0

 ✔ swap token0 for exactly 1.0000 token1

 ✔ swap token1 for exactly 1.0000 token0

 ✔ swap exactly 1.0000 token0 for token1 to price 0.50000

 ✔ swap exactly 1.0000 token1 for token0 to price 2.0000

 ✔ swap token0 for exactly 1.0000 token1 to price 0.50000

 ✔ swap token1 for exactly 1.0000 token0 to price 2.0000

 ✔ swap exactly 0.0000000000000010000 token0 for token1

 ✔ swap exactly 0.0000000000000010000 token1 for token0

 ✔ swap token0 for exactly 0.0000000000000010000 token1

 ✔ swap token1 for exactly 0.0000000000000010000 token0 (38ms)

 ✔ swap token1 for token0 to price 2.5000

 ✔ swap token0 for token1 to price 0.40000

 ✔ swap token0 for token1 to price 2.5000

 ✔ swap token1 for token0 to price 0.40000

 medium fee, 1:1 price, 2e18 max range liquidity

 ✔ swap exactly 1.0000 token0 for token1

 ✔ swap exactly 1.0000 token1 for token0

 ✔ swap token0 for exactly 1.0000 token1

 ✔ swap token1 for exactly 1.0000 token0

 ✔ swap exactly 1.0000 token0 for token1 to price 0.50000

 ✔ swap exactly 1.0000 token1 for token0 to price 2.0000 (72ms)

 ✔ swap token0 for exactly 1.0000 token1 to price 0.50000

 ✔ swap token1 for exactly 1.0000 token0 to price 2.0000

 ✔ swap exactly 0.0000000000000010000 token0 for token1 (118ms)

 ✔ swap exactly 0.0000000000000010000 token1 for token0

 ✔ swap token0 for exactly 0.0000000000000010000 token1

 ✔ swap token1 for exactly 0.0000000000000010000 token0

 ✔ swap token1 for token0 to price 2.5000

 ✔ swap token0 for token1 to price 0.40000

 ✔ swap token0 for token1 to price 2.5000

 ✔ swap token1 for token0 to price 0.40000

 high fee, 1:1 price, 2e18 max range liquidity

 ✔ swap exactly 1.0000 token0 for token1

 ✔ swap exactly 1.0000 token1 for token0

 ✔ swap token0 for exactly 1.0000 token1

 ✔ swap token1 for exactly 1.0000 token0

 ✔ swap exactly 1.0000 token0 for token1 to price 0.50000

 ✔ swap exactly 1.0000 token1 for token0 to price 2.0000

 ✔ swap token0 for exactly 1.0000 token1 to price 0.50000

 ✔ swap token1 for exactly 1.0000 token0 to price 2.0000

 ✔ swap exactly 0.0000000000000010000 token0 for token1

 ✔ swap exactly 0.0000000000000010000 token1 for token0

 ✔ swap token0 for exactly 0.0000000000000010000 token1

 ✔ swap token1 for exactly 0.0000000000000010000 token0

 ✔ swap token1 for token0 to price 2.5000

 ✔ swap token0 for token1 to price 0.40000

 ✔ swap token0 for token1 to price 2.5000

 ✔ swap token1 for token0 to price 0.40000

 medium fee, 10:1 price, 2e18 max range liquidity

 ✔ swap exactly 1.0000 token0 for token1

 ✔ swap exactly 1.0000 token1 for token0

 ✔ swap token0 for exactly 1.0000 token1

 ✔ swap token1 for exactly 1.0000 token0 (60ms)

 ✔ swap exactly 1.0000 token0 for token1 to price 0.50000

 ✔ swap exactly 1.0000 token1 for token0 to price 2.0000

 ✔ swap token0 for exactly 1.0000 token1 to price 0.50000

 ✔ swap token1 for exactly 1.0000 token0 to price 2.0000

 ✔ swap exactly 0.0000000000000010000 token0 for token1

 ✔ swap exactly 0.0000000000000010000 token1 for token0

 ✔ swap token0 for exactly 0.0000000000000010000 token1

 ✔ swap token1 for exactly 0.0000000000000010000 token0

 ✔ swap token1 for token0 to price 2.5000

 ✔ swap token0 for token1 to price 0.40000

 ✔ swap token0 for token1 to price 2.5000

 ✔ swap token1 for token0 to price 0.40000

 medium fee, 1:10 price, 2e18 max range liquidity

 ✔ swap exactly 1.0000 token0 for token1

 ✔ swap exactly 1.0000 token1 for token0

 ✔ swap token0 for exactly 1.0000 token1

 ✔ swap token1 for exactly 1.0000 token0

 ✔ swap exactly 1.0000 token0 for token1 to price 0.50000

 ✔ swap exactly 1.0000 token1 for token0 to price 2.0000

 ✔ swap token0 for exactly 1.0000 token1 to price 0.50000

 ✔ swap token1 for exactly 1.0000 token0 to price 2.0000

 ✔ swap exactly 0.0000000000000010000 token0 for token1

 ✔ swap exactly 0.0000000000000010000 token1 for token0

 ✔ swap token0 for exactly 0.0000000000000010000 token1

 ✔ swap token1 for exactly 0.0000000000000010000 token0

 ✔ swap token1 for token0 to price 2.5000

 ✔ swap token0 for token1 to price 0.40000

 ✔ swap token0 for token1 to price 2.5000

 ✔ swap token1 for token0 to price 0.40000

 medium fee, 1:1 price, 0 liquidity, all liquidity around current price

 ✔ swap exactly 1.0000 token0 for token1

 ✔ swap exactly 1.0000 token1 for token0

 ✔ swap token0 for exactly 1.0000 token1

 ✔ swap token1 for exactly 1.0000 token0

 ✔ swap exactly 1.0000 token0 for token1 to price 0.50000

 ✔ swap exactly 1.0000 token1 for token0 to price 2.0000

 ✔ swap token0 for exactly 1.0000 token1 to price 0.50000

 ✔ swap token1 for exactly 1.0000 token0 to price 2.0000

 ✔ swap exactly 0.0000000000000010000 token0 for token1

 ✔ swap exactly 0.0000000000000010000 token1 for token0

 ✔ swap token0 for exactly 0.0000000000000010000 token1

 ✔ swap token1 for exactly 0.0000000000000010000 token0

 ✔ swap token1 for token0 to price 2.5000

 ✔ swap token0 for token1 to price 0.40000

 ✔ swap token0 for token1 to price 2.5000

 ✔ swap token1 for token0 to price 0.40000

 medium fee, 1:1 price, additional liquidity around current price

 ✔ swap exactly 1.0000 token0 for token1

 ✔ swap exactly 1.0000 token1 for token0

 ✔ swap token0 for exactly 1.0000 token1

 ✔ swap token1 for exactly 1.0000 token0

 ✔ swap exactly 1.0000 token0 for token1 to price 0.50000

 ✔ swap exactly 1.0000 token1 for token0 to price 2.0000

 ✔ swap token0 for exactly 1.0000 token1 to price 0.50000

 ✔ swap token1 for exactly 1.0000 token0 to price 2.0000

 ✔ swap exactly 0.0000000000000010000 token0 for token1

 ✔ swap exactly 0.0000000000000010000 token1 for token0

 ✔ swap token0 for exactly 0.0000000000000010000 token1

 ✔ swap token1 for exactly 0.0000000000000010000 token0

 ✔ swap token1 for token0 to price 2.5000

 ✔ swap token0 for token1 to price 0.40000

 ✔ swap token0 for token1 to price 2.5000

 ✔ swap token1 for token0 to price 0.40000

 low fee, large liquidity around current price (stable swap)

 ✔ swap exactly 1.0000 token0 for token1 (155ms)

 ✔ swap exactly 1.0000 token1 for token0 (96ms)

 ✔ swap token0 for exactly 1.0000 token1 (73ms)

 ✔ swap token1 for exactly 1.0000 token0 (81ms)

 ✔ swap exactly 1.0000 token0 for token1 to price 0.50000

 ✔ swap exactly 1.0000 token1 for token0 to price 2.0000 (143ms)

 ✔ swap token0 for exactly 1.0000 token1 to price 0.50000

 ✔ swap token1 for exactly 1.0000 token0 to price 2.0000

 ✔ swap exactly 0.0000000000000010000 token0 for token1

 ✔ swap exactly 0.0000000000000010000 token1 for token0

 ✔ swap token0 for exactly 0.0000000000000010000 token1

 ✔ swap token1 for exactly 0.0000000000000010000 token0

 ✔ swap token1 for token0 to price 2.5000

 ✔ swap token0 for token1 to price 0.40000

 ✔ swap token0 for token1 to price 2.5000

 ✔ swap token1 for token0 to price 0.40000

 medium fee, token0 liquidity only

 ✔ swap exactly 1.0000 token0 for token1

 ✔ swap exactly 1.0000 token1 for token0

 ✔ swap token0 for exactly 1.0000 token1

 ✔ swap token1 for exactly 1.0000 token0

 ✔ swap exactly 1.0000 token0 for token1 to price 0.50000

 ✔ swap exactly 1.0000 token1 for token0 to price 2.0000

 ✔ swap token0 for exactly 1.0000 token1 to price 0.50000

 ✔ swap token1 for exactly 1.0000 token0 to price 2.0000

 ✔ swap exactly 0.0000000000000010000 token0 for token1 (44ms)

 ✔ swap exactly 0.0000000000000010000 token1 for token0

 ✔ swap token0 for exactly 0.0000000000000010000 token1

 ✔ swap token1 for exactly 0.0000000000000010000 token0

 ✔ swap token1 for token0 to price 2.5000

 ✔ swap token0 for token1 to price 0.40000

 ✔ swap token0 for token1 to price 2.5000

 ✔ swap token1 for token0 to price 0.40000

 medium fee, token1 liquidity only

 ✔ swap exactly 1.0000 token0 for token1

 ✔ swap exactly 1.0000 token1 for token0

 ✔ swap token0 for exactly 1.0000 token1

 ✔ swap token1 for exactly 1.0000 token0

 ✔ swap exactly 1.0000 token0 for token1 to price 0.50000

 ✔ swap exactly 1.0000 token1 for token0 to price 2.0000

 ✔ swap token0 for exactly 1.0000 token1 to price 0.50000

 ✔ swap token1 for exactly 1.0000 token0 to price 2.0000

 ✔ swap exactly 0.0000000000000010000 token0 for token1

 ✔ swap exactly 0.0000000000000010000 token1 for token0

 ✔ swap token0 for exactly 0.0000000000000010000 token1

 ✔ swap token1 for exactly 0.0000000000000010000 token0

 ✔ swap token1 for token0 to price 2.5000

 ✔ swap token0 for token1 to price 0.40000

 ✔ swap token0 for token1 to price 2.5000

 ✔ swap token1 for token0 to price 0.40000

 close to max price

 ✔ swap exactly 1.0000 token0 for token1

 ✔ swap exactly 1.0000 token1 for token0

 ✔ swap token0 for exactly 1.0000 token1

 ✔ swap token1 for exactly 1.0000 token0

 ✔ swap exactly 1.0000 token0 for token1 to price 0.50000

 ✔ swap exactly 1.0000 token1 for token0 to price 2.0000

 ✔ swap token0 for exactly 1.0000 token1 to price 0.50000

 ✔ swap token1 for exactly 1.0000 token0 to price 2.0000

 ✔ swap exactly 0.0000000000000010000 token0 for token1

 ✔ swap exactly 0.0000000000000010000 token1 for token0

 ✔ swap token0 for exactly 0.0000000000000010000 token1

 ✔ swap token1 for exactly 0.0000000000000010000 token0

 ✔ swap token1 for token0 to price 2.5000

 ✔ swap token0 for token1 to price 0.40000 (40ms)

 ✔ swap token0 for token1 to price 2.5000 (39ms)

 ✔ swap token1 for token0 to price 0.40000

 close to min price

 ✔ swap exactly 1.0000 token0 for token1

 ✔ swap exactly 1.0000 token1 for token0

 ✔ swap token0 for exactly 1.0000 token1

 ✔ swap token1 for exactly 1.0000 token0

 ✔ swap exactly 1.0000 token0 for token1 to price 0.50000

 ✔ swap exactly 1.0000 token1 for token0 to price 2.0000

 ✔ swap token0 for exactly 1.0000 token1 to price 0.50000

 ✔ swap token1 for exactly 1.0000 token0 to price 2.0000

 ✔ swap exactly 0.0000000000000010000 token0 for token1

 ✔ swap exactly 0.0000000000000010000 token1 for token0

 ✔ swap token0 for exactly 0.0000000000000010000 token1

 ✔ swap token1 for exactly 0.0000000000000010000 token0

 ✔ swap token1 for token0 to price 2.5000

 ✔ swap token0 for token1 to price 0.40000

 ✔ swap token0 for token1 to price 2.5000

 ✔ swap token1 for token0 to price 0.40000

 max full range liquidity at 1:1 price with default fee

 ✔ swap exactly 1.0000 token0 for token1

 ✔ swap exactly 1.0000 token1 for token0

 ✔ swap token0 for exactly 1.0000 token1

 ✔ swap token1 for exactly 1.0000 token0

 ✔ swap exactly 1.0000 token0 for token1 to price 0.50000

 ✔ swap exactly 1.0000 token1 for token0 to price 2.0000

 ✔ swap token0 for exactly 1.0000 token1 to price 0.50000

 ✔ swap token1 for exactly 1.0000 token0 to price 2.0000

 ✔ swap exactly 0.0000000000000010000 token0 for token1

 ✔ swap exactly 0.0000000000000010000 token1 for token0

 ✔ swap token0 for exactly 0.0000000000000010000 token1

 ✔ swap token1 for exactly 0.0000000000000010000 token0

 ✔ swap token1 for token0 to price 2.5000

 ✔ swap token0 for token1 to price 0.40000

 ✔ swap token0 for token1 to price 2.5000

 ✔ swap token1 for token0 to price 0.40000

 initialized at the max ratio

 ✔ swap exactly 1.0000 token0 for token1 (52ms)

 ✔ swap exactly 1.0000 token1 for token0

 ✔ swap token0 for exactly 1.0000 token1

 ✔ swap token1 for exactly 1.0000 token0

 ✔ swap exactly 1.0000 token0 for token1 to price 0.50000 (40ms)

 ✔ swap exactly 1.0000 token1 for token0 to price 2.0000

 ✔ swap token0 for exactly 1.0000 token1 to price 0.50000

 ✔ swap token1 for exactly 1.0000 token0 to price 2.0000

 ✔ swap exactly 0.0000000000000010000 token0 for token1

 ✔ swap exactly 0.0000000000000010000 token1 for token0

 ✔ swap token0 for exactly 0.0000000000000010000 token1

 ✔ swap token1 for exactly 0.0000000000000010000 token0

 ✔ swap token1 for token0 to price 2.5000

 ✔ swap token0 for token1 to price 0.40000

 ✔ swap token0 for token1 to price 2.5000

 ✔ swap token1 for token0 to price 0.40000

 initialized at the min ratio

 ✔ swap exactly 1.0000 token0 for token1

 ✔ swap exactly 1.0000 token1 for token0

 ✔ swap token0 for exactly 1.0000 token1

 ✔ swap token1 for exactly 1.0000 token0

 ✔ swap exactly 1.0000 token0 for token1 to price 0.50000

 ✔ swap exactly 1.0000 token1 for token0 to price 2.0000

 ✔ swap token0 for exactly 1.0000 token1 to price 0.50000

 ✔ swap token1 for exactly 1.0000 token0 to price 2.0000

 ✔ swap exactly 0.0000000000000010000 token0 for token1

 ✔ swap exactly 0.0000000000000010000 token1 for token0

 ✔ swap token0 for exactly 0.0000000000000010000 token1

 ✔ swap token1 for exactly 0.0000000000000010000 token0

 ✔ swap token1 for token0 to price 2.5000

 ✔ swap token0 for token1 to price 0.40000

 ✔ swap token0 for token1 to price 2.5000

 ✔ swap token1 for token0 to price 0.40000

 UniswapV3Pool

 ✔ constructor initializes immutables

 multi-swaps

 ✔ multi-swap

Snapshot Summary

 › 513 snapshots written from 12 test suites.

 959 passing (28s)

 20 pending

Ran 2 tests for forge-test/debug/OriginPool.t.sol:OriginalV3PoolDebugTest

[PASS] testWithoutAmountOut() (gas: 92137)

[PASS] testWithoutAmountOut_test2() (gas: 121581)

Suite result: ok. 2 passed; 0 failed; 0 skipped; finished in 7.35ms (372.17µs CPU time)

Ran 4 tests for forge-test/debug/StepToNextTickDirectTest.t.sol:StepToNextTickDirectTest

[PASS] test_StepToNextTick_EdgeCase_DifferentAmountThresholds() (gas: 166246)

[PASS] test_StepToNextTick_WhenAmountIsSufficient_PriceMovesToNextTick() (gas: 45623)

[PASS] test_StepToNextTick_WhenCurrentTickEqualsNextTick_StateRemainsUnchanged() (gas: 44101)

[PASS] test_StepToNextTick_ZeroForOneTrue_Behavior() (gas: 47634)

Suite result: ok. 4 passed; 0 failed; 0 skipped; finished in 7.76ms (2.07ms CPU time)

Ran 6 tests for forge-test/OrderPoolWithoutOrder.t.sol:OrderPoolSwapWithoutOrdersTest

[PASS] testInitialState() (gas: 27392)

[PASS] testSwapExact0For1_all_orders() (gas: 225938)

[PASS] testSwapExact0For1_all_orders_with_limit() (gas: 185126)

[PASS] testSwapExact0For1_ori_0001() (gas: 181290)

[PASS] testSwapExact0For1_ori_001() (gas: 220354)

[PASS] testSwapExact1For0_all_orders() (gas: 218431)

Suite result: ok. 6 passed; 0 failed; 0 skipped; finished in 9.24ms (2.96ms CPU time)

Ran 8 tests for forge-test/OriginalV3Pool.t.sol:OriginalV3PoolTest

[PASS] testInitialState() (gas: 18816)

[PASS] testSwapExact0For1_all_orders() (gas: 171596)

[PASS] testSwapExact0For1_all_orders_with_limit() (gas: 135931)

[PASS] testSwapExact0For1_ori_0001() (gas: 136636)

[PASS] testSwapExact0For1_ori_001() (gas: 167010)

[PASS] testSwapExact1For0_all_orders() (gas: 167268)

[PASS] testSwapExact1For0_partial_order() (gas: 113158)

[PASS] testV0CornerCase_TickTransition0_1() (gas: 6112265)

Suite result: ok. 8 passed; 0 failed; 0 skipped; finished in 9.18ms (3.03ms CPU time)

Ran 2 tests for forge-test/UniswapV3Factory.t.sol:MondayFactoryTest

[PASS] testSetNewConfig() (gas: 39997)

[PASS] testSetOrderTickSpacing() (gas: 850606)

Suite result: ok. 2 passed; 0 failed; 0 skipped; finished in 7.65ms (1.35ms CPU time)

Ran 3 tests for forge-test/debug/StepToNextTickTest.t.sol:StepToNextTickTest

[PASS] test_StepToNextTick_EdgeCase_MinimalAmountAtTickBoundary() (gas: 973237)

[PASS] test_StepToNextTick_WhenAmountIsSufficient_PriceMovesToNextTick() (gas: 477493)

[PASS] test_StepToNextTick_WhenCurrentTickEqualsNextTick_StateRemainsUnchanged() (gas: 475505)

Suite result: ok. 3 passed; 0 failed; 0 skipped; finished in 7.23ms (5.85ms CPU time)

Ran 13 tests for forge-test/orderPoolSwap.t.sol:OrderPoolSwapTest

[PASS] testInitialState() (gas: 27465)

[PASS] testSwapExact0For1() (gas: 241770)

[PASS] testSwapExact0For1_all_orders_int() (gas: 449741)

[PASS] testSwapExact0For1_all_orders_two_step_exactly() (gas: 337049)

[PASS] testSwapExact0For1_all_orders_two_step_with_limit() (gas: 494522)

[PASS] testSwapExact0For1_all_orders_with_limit() (gas: 444769)

[PASS] testSwapExact0ForOut1_all_orders() (gas: 447522)

[PASS] testSwapExact0ForOut1_partial_order() (gas: 268319)

[PASS] testSwapExact1For0_all_orders() (gas: 437733)

[PASS] testSwapExact1For0_partial_order() (gas: 256269)

[PASS] testSwapExact1ForOut0_all_orders() (gas: 420598)

[PASS] testSwapExact1ForOut0_partial_order() (gas: 245227)

[PASS] testSwapFeeEvent() (gas: 429278)

Suite result: ok. 13 passed; 0 failed; 0 skipped; finished in 10.44ms (8.06ms CPU time)

Ran 4 tests for forge-test/ExtremeTickSpacing.t.sol:ExtremeTickSpacingTest

[PASS] testCase1_PartialFill1To0() (gas: 2006852)

[PASS] testCase2_PartialFill0To1() (gas: 1004668)

[PASS] testCase3_ExactOut1To0() (gas: 1989043)

[PASS] testCase4_ExactOut0To1() (gas: 996406)

Suite result: ok. 4 passed; 0 failed; 0 skipped; finished in 13.76ms (11.55ms CPU time)

Ran 3 tests for forge-test/debug/SwapBug.t.sol:OrderFilledWhileNotAtPrice

[PASS] test_OrderFillBehavior_AtTick24080_WithSqrtPriceVariations() (gas: 1290187)

[PASS] test_OrderFillBehavior_AtTick24082_WithSqrtPriceVariations() (gas: 1558073)

[PASS] test_UnreachedFutureOrderTick_IsNotFillable_ButCurrentCodeFills() (gas: 621190)

Suite result: ok. 3 passed; 0 failed; 0 skipped; finished in 6.86ms (5.37ms CPU time)

Ran 1 test for forge-test/MonadOnline.t.sol:MonadOnlineTest

[FAIL: vm.envString: environment variable "MONAD_TESTNET_RPC" not found] setUp() (gas: 0)

Suite result: FAILED. 0 passed; 1 failed; 0 skipped; finished in 2.36ms (0.00ns CPU time)

Ran 11 tests for forge-test/periphery/SwapRouterPlace.t.sol:SwapRouterPlaceTest

[PASS] testBatchWithdrawToNativeToken() (gas: 1659291)

[PASS] testCancelPlaceWithNativeToken() (gas: 273446)

[PASS] testCancelWithNativeToken() (gas: 536571)

[PASS] testDefaultRecipient() (gas: 275669)

[PASS] testPlaceBothDirections() (gas: 496027)

[PASS] testPlaceMultipleOrders() (gas: 610492)

[PASS] testPlaceOrder() (gas: 294099)

[PASS] testPlaceWithNativeToken() (gas: 288334)

[PASS] testRevert_PlaceWithIncorrectNativeAmount() (gas: 37042)

[PASS] testWithdrawToNativeToken() (gas: 1170669)

[PASS] test_revert_invalidMinOrderAmount() (gas: 425337)

Suite result: ok. 11 passed; 0 failed; 0 skipped; finished in 24.00ms (17.17ms CPU time)

Ran 2 tests for forge-test/PartialFilledOrder.t.sol:PartialFilledOrderTest

[PASS] testMultiplePartialFills_CheckToken0() (gas: 1675445)

[PASS] testMultiplePartialFills_CheckToken1() (gas: 1700316)

Suite result: ok. 2 passed; 0 failed; 0 skipped; finished in 14.97ms (13.51ms CPU time)

Ran 4 tests for forge-test/periphery/QuoterV2.t.sol:QuoterV2Test

[PASS] testQuoteExactInputSingle() (gas: 195492)

[PASS] testQuoteExactOutputSingle() (gas: 382582)

[PASS] testQuoteWithInsufficientLiquidity() (gas: 1190085)

[PASS] testQuoteWithPriceLimit() (gas: 192197)

Suite result: ok. 4 passed; 0 failed; 0 skipped; finished in 9.06ms (7.42ms CPU time)

Ran 24 tests for forge-test/BranchCorner.t.sol:BranchCornerCase

[PASS] test10_stepToNext_tickSpacing1() (gas: 926625)

[PASS] test10_stepToNext_tickSpacing2() (gas: 1010197)

[PASS] test10_stepToNext_tickSpacing60() (gas: 957195)

[PASS] testFeeAmountCorrect_tickSpacing1() (gas: 926602)

[PASS] testFeeAmountCorrect_tickSpacing2() (gas: 794372)

[PASS] testFeeAmountCorrect_tickSpacing60() (gas: 850045)

[PASS] testFinalTickTotalSizeIsZero_tickSpacing1() (gas: 926603)

[PASS] testFinalTickTotalSizeIsZero_tickSpacing2() (gas: 794350)

[PASS] testFinalTickTotalSizeIsZero_tickSpacing60() (gas: 850001)

[PASS] testNextRangeTick_tickSpacing1() (gas: 671593)

[PASS] testNextRangeTick_tickSpacing2() (gas: 982421)

[PASS] testNextRangeTick_tickSpacing60() (gas: 632618)

[PASS] testNoLeftOrder_tickSpacing1() (gas: 926602)

[PASS] testNoLeftOrder_tickSpacing2() (gas: 760208)

[PASS] testNoLeftOrder_tickSpacing60() (gas: 849956)

[PASS] testNotCrossEmptyRangeTick_tickSpacing1() (gas: 869602)

[PASS] testNotCrossEmptyRangeTick_tickSpacing2() (gas: 818289)

[PASS] testNotCrossEmptyRangeTick_tickSpacing60() (gas: 980998)

[PASS] testStepNextEqFinalTick_tickSpacing1() (gas: 871503)

[PASS] testStepNextEqFinalTick_tickSpacing2() (gas: 789544)

[PASS] testStepNextEqFinalTick_tickSpacing60() (gas: 823317)

[PASS] testStepToNext_01_tickSpacing1() (gas: 1013242)

[PASS] testStepToNext_01_tickSpacing2() (gas: 1010933)

[PASS] testStepToNext_01_tickSpacing60() (gas: 825373)

Suite result: ok. 24 passed; 0 failed; 0 skipped; finished in 28.55ms (23.67ms CPU time)

Ran 8 tests for forge-test/CornerCase.t.sol:CornerCaseTest

[PASS] testRedundantAmountIn() (gas: 1484744)

[PASS] testSwapExact0For1_all_orders_two_step_exactly() (gas: 1607319)

[PASS] testSwapExact0For1_all_orders_two_step_exactly_liq2() (gas: 1490806)

[PASS] testSwapExactRangeTickInnerSize() (gas: 1460887)

[PASS] testTickStatus() (gas: 1254348)

[PASS] testTickTransition0_1_with_orders() (gas: 2641158)

[PASS] testTickTransition1_0_with_orders() (gas: 2288374)

[PASS] testTickTransitionCannotRunTwiceIfZeroForOneSwapEndsAtFractionalPriceJustBelowTick() (gas:

1903643)

Suite result: ok. 8 passed; 0 failed; 0 skipped; finished in 29.05ms (18.27ms CPU time)

Ran 17 tests for forge-test/OrderPoolWithdraw.t.sol:OrderPoolWithdrawTest

[PASS] testCancelOrderAfterPartialFill_Token0_Nonce0Increment() (gas: 546771)

[PASS] testCancelOrderAfterPartialFill_Token1_Nonce1Increment() (gas: 539404)

[PASS] testCancelWithDifferentSizes() (gas: 408446)

[PASS] testOrderTickSpacingValidation() (gas: 741136)

[PASS] testReadOrderStatus_FullyFilled() (gas: 442280)

[PASS] testReadOrderStatus_NoFill() (gas: 256172)

[PASS] testReadOrderStatus_PartiallyFilled() (gas: 687846)

[PASS] testWithdrawAfterSwap0For1_ExactIn_Out1Ether() (gas: 677250)

[PASS] testWithdrawAfterSwap0For1_ExactOut1Ether() (gas: 692807)

[PASS] testWithdrawAfterSwap0For1_ExactOut1_5Ether() (gas: 725092)

[PASS] testWithdrawAfterSwap0For1_ExactOut1_5Ether_withMakerFee() (gas: 722371)

[PASS] testWithdrawAfterSwap0For1_ExactOut_2Ether() (gas: 832304)

[PASS] testWithdrawAfterSwap1For0_ExactIn_Out1Ether() (gas: 616774)

[PASS] testWithdrawAfterSwap1For0_ExactIn_Out1_5Ether() (gas: 669808)

[PASS] testWithdrawAfterSwap1For0_ExactOut1Ether() (gas: 617080)

[PASS] testWithdrawAfterSwap1For0_ExactOut1_5Ether() (gas: 668592)

[PASS] testWithdrawAfterSwap1For0_ExactOut1_5Ether_withMakerFee() (gas: 676136)

Suite result: ok. 17 passed; 0 failed; 0 skipped; finished in 6.78ms (14.85ms CPU time)

Ran 1 test for forge-test/LimitTickSpacing_2.t.sol:LimitTickSpacingTest_2

[PASS] test_2TickSpacing_Case1_PartialFill1To0() (gas: 2204772)

Suite result: ok. 1 passed; 0 failed; 0 skipped; finished in 5.61ms (4.31ms CPU time)

Ran 9 tests for forge-test/OrderPoolPlace.t.sol:OrderPoolPlaceTest

[PASS] testBatchCancel() (gas: 495330)

[PASS] testBatchPlace() (gas: 564382)

[PASS] testBatchWithdraw() (gas: 966797)

[PASS] testCancelOrderEvent() (gas: 298053)

[PASS] testPartialFillAndCancel() (gas: 641781)

[PASS] testPlaceAndCancelMultipleOrders() (gas: 503937)

[PASS] testPlaceAndCancelOrder() (gas: 281461)

[PASS] testPlaceOrderWithInvalidAmount() (gas: 308226)

[PASS] testPlaceSwapPlace() (gas: 959074)

Suite result: ok. 9 passed; 0 failed; 0 skipped; finished in 9.46ms (5.94ms CPU time)

Ran 6 tests for forge-test/DenseOrderSwap.t.sol:DenseOrderSwapTest

[PASS] testLargeSwap() (gas: 391262)

[PASS] testMixSwap_10order() (gas: 1445186)

[PASS] testMixSwap_5order() (gas: 1409918)

[PASS] testSmallSwap() (gas: 1597617)

[PASS] testSmallSwapNegativeTicks() (gas: 4124084)

[PASS] testSwapThenPlaceThenSwap() (gas: 918895)

Suite result: ok. 6 passed; 0 failed; 0 skipped; finished in 31.50ms (25.09ms CPU time)

Ran 3 tests for forge-test/lib-test/FullMath.t.sol:FullMathTest

[PASS] testFuzzMulDivReversibility(uint256,uint24) (runs: 256, μ: 5243, ~: 5217)

[PASS] testMulDivEdgeCases() (gas: 66663)

[PASS] testMulDivReversibility() (gas: 9135)

Suite result: ok. 3 passed; 0 failed; 0 skipped; finished in 10.27ms (10.35ms CPU time)

Ran 3 tests for forge-test/lib-test/LibOrder.t.sol:LibOrderTest

[PASS] testCalAmountAtCurrentTickEdgeCases() (gas: 700609)

[PASS] testFuzzCalAmountAtCurrentTick(uint128,int24) (runs: 256, μ: 25814, ~: 19828)

[PASS] testOverflowProtectionDifference() (gas: 83240)

Suite result: ok. 3 passed; 0 failed; 0 skipped; finished in 46.99ms (43.36ms CPU time)

Ran 21 test suites in 229.33ms (298.09ms CPU time): 133 tests passed, 1 failed, 0 skipped (134 total

tests)

Failing tests:

Encountered 1 failing test in forge-test/MonadOnline.t.sol:MonadOnlineTest

[FAIL: vm.envString: environment variable "MONAD_TESTNET_RPC" not found] setUp() (gas: 0)

Encountered a total of 1 failing tests, 133 tests succeeded

Code Coverage
No coverage data can be generated due to stack too deep errors.

Changelog
2025-09-25 - Initial Report
2025-10-23 - Final Report

About Quantstamp
Quantstamp is a global leader in blockchain security. Founded in 2017, Quantstamp’s mission is to securely onboard the next billion users to Web3
through its best-in-class Web3 security products and services.

Quantstamp’s team consists of cybersecurity experts hailing from globally recognized organizations including Microsoft, AWS, BMW, Meta, and
the Ethereum Foundation. Quantstamp engineers hold PhDs or advanced computer science degrees, with decades of combined experience in
formal verification, static analysis, blockchain audits, penetration testing, and original leading-edge research.

To date, Quantstamp has performed more than 500 audits and secured over $200 billion in digital asset risk from hackers. Quantstamp has
worked with a diverse range of customers, including startups, category leaders and financial institutions. Brands that Quantstamp has worked
with include Ethereum 2.0, Binance, Visa, PayPal, Polygon, Avalanche, Curve, Solana, Compound, Lido, MakerDAO, Arbitrum, OpenSea and the
World Economic Forum.

Quantstamp’s collaborations and partnerships showcase our commitment to world-class research, development and security. We're honored to
work with some of the top names in the industry and proud to secure the future of web3.

Notable Collaborations & Customers:
Blockchains: Ethereum 2.0, Near, Flow, Avalanche, Solana, Cardano, Binance Smart Chain, Hedera Hashgraph, Tezos
DeFi: Curve, Compound, Maker, Lido, Polygon, Arbitrum, SushiSwap
NFT: OpenSea, Parallel, Dapper Labs, Decentraland, Sandbox, Axie Infinity, Illuvium, NBA Top Shot, Zora
Academic institutions: National University of Singapore, MIT

Timeliness of content

The content contained in the report is current as of the date appearing on the report and is subject to change without notice, unless indicated
otherwise by Quantstamp; however, Quantstamp does not guarantee or warrant the accuracy, timeliness, or completeness of any report you
access using the internet or other means, and assumes no obligation to update any information following publication or other making available of
the report to you by Quantstamp.

Notice of confidentiality

This report, including the content, data, and underlying methodologies, are subject to the confidentiality and feedback provisions in your
agreement with Quantstamp. These materials are not to be disclosed, extracted, copied, or distributed except to the extent expressly authorized
by Quantstamp.

Links to other websites

You may, through hypertext or other computer links, gain access to web sites operated by persons other than Quantstamp. Such hyperlinks are
provided for your reference and convenience only, and are the exclusive responsibility of such web sites' owners. You agree that Quantstamp are
not responsible for the content or operation of such web sites, and that Quantstamp shall have no liability to you or any other person or entity for
the use of third-party web sites. Except as described below, a hyperlink from this web site to another web site does not imply or mean that
Quantstamp endorses the content on that web site or the operator or operations of that site. You are solely responsible for determining the
extent to which you may use any content at any other web sites to which you link from the report. Quantstamp assumes no responsibility for the
use of third-party software on any website and shall have no liability whatsoever to any person or entity for the accuracy or completeness of any
output generated by such software.

Disclaimer

The review and this report are provided on an as-is, where-is, and as-available basis. To the fullest extent permitted by law, Quantstamp
disclaims all warranties, expressed implied, in connection with this report, its content, and the related services and products and your use
thereof, including, without limitation, the implied warranties of merchantability, fitness for a particular purpose, and non-infringement. You agree
that access and/or use of the report and other results of the review, including but not limited to any associated services, products, protocols,
platforms, content, and materials, will be at your sole risk. FOR AVOIDANCE OF DOUBT, THE REPORT, ITS CONTENT, ACCESS, AND/OR USAGE
THEREOF, INCLUDING ANY ASSOCIATED SERVICES OR MATERIALS, SHALL NOT BE CONSIDERED OR RELIED UPON AS ANY FORM OF
FINANCIAL, INVESTMENT, TAX, LEGAL, REGULATORY, OR OTHER ADVICE. This report is based on the scope of materials and documentation
provided for a limited review at the time provided. You acknowledge that Blockchain technology remains under development and is subject to
unknown risks and flaws and, as such, the report may not be complete or inclusive of all vulnerabilities. The review is limited to the materials
identified in the report and does not extend to the compiler layer, or any other areas beyond the programming language, or programming aspects
that could present security risks. The report does not indicate the endorsement by Quantstamp of any particular project or team, nor guarantee
its security, and may not be represented as such. No third party is entitled to rely on the report in any way, including for the purpose of making
any decisions to buy or sell a product, service or any other asset. Quantstamp does not warrant, endorse, guarantee, or assume responsibility for

any product or service advertised or offered by a third party, or any open source or third-party software, code, libraries, materials, or information
to, called by, referenced by or accessible through the report, its content, or any related services and products, any hyperlinked websites, or any
other websites or mobile applications, and we will not be a party to or in any way be responsible for monitoring any transaction between you and
any third party. As with the purchase or use of a product or service through any medium or in any environment, you should use your best
judgment and exercise caution where appropriate.

© 2025 – Quantstamp, Inc. Monday Trade - Spot

