n Quantstamp

Monday Trade - Spot

Executive Summary

This audit report was prepared by Quantstamp, the leader in blockchain security.

Type DEX Documentation quality Medium
Timeline 2025-09-01 through 2025-09-25 Test quality High ——
Language Solidity 13
Total Findings Fixed: 8 Acknowledged: 4

Architecture Review, Unit Testing, Functional
Methods Testing, Computer-Aided Verification, Manual

NIWE High severity findings ® 0

L Monday Trade Whitepaper 2 . .

Specification 2 Medium severity findings © 2 Fixed: 1 Acknowledged: 1
Diff/Fork Forked from: Uniswap V3. Low severity findings ® g Fixed: 3 Acknowledged: 2
information

e SynFutures/MondayTrade-Spot (4 Undetermined severity 0
Source Code findings ®©

#ed74fad

e Hytham Farah Auditing Engineer Informational findings © S Fixed: 4 Acknowledged: 1

Auditors e Hamed Mohammadi Auditing Engineer

e Tim Sigl Auditing Engineer

Summary of Findings

Monday Trade - Spot is a Uniswap V3-based protocol that enhances concentrated-liquidity AMMSs by introducing on-chain limit order
functionality, forming a hybrid orderbook—-AMM system. It separates liquidity into two categories: traditional AMM liquidity (identical to Uniswap
V3) and order liquidity (limit orders placed at specific price ticks).

Key audit considerations include:

1. A dual-liquidity architecture managed through delegated handler contracts — LiquidityHandler , OrderHandler ,and SwapHandler
— all orchestrated by the main MondayPool contract.
2. The Lazy Crossing mechanism - an order execution mechanism that leverages orderTickSpacing for gas efficiency, enabling delayed
order settlements as ticks are crossed.
3. Complex state management around partially filled orders, including deferred settlement to minimize gas consumption.
4. Distinct fee structures applied separately to AMM and order liquidity.
Together, these elements create a sophisticated system balancing AMM liquidity depth with orderbook-style precision.

The most significant issue we found is related to logic errors in the limit order system, which may result in traders overpaying (OYSTR-1), as well
as MEV opportunities that come at the expense of users who have placed orders earlier (OYSTR-2). No high-severity issues were uncovered
during this audit.

Overall, the codebase is well-written but extremely complex. Additional documentation, especially more detailed NatSpec and in-line code
comments (OYSTR-8), would greatly aid in understanding of the codebase and is highly recommended.

FIX-REVIEW UPDATE: Most issues have been properly addressed, with only minor adjustments remaining. Test-related concerns have been fully
resolved, and both comprehensive test suites now pass successfully. Further improvements to documentation—particularly through expanded
NatSpec comments—remain recommended.

https://quantstamp.com/
https://monday.trade/monday_trade_whitepaper.pdf
https://github.com/Uniswap/v3-core/commit/d8b1c635c275d2a9450bd6a78f3fa2484fef73eb
https://github.com/SynFutures/MondayTrade-Spot/
https://github.com/SynFutures/MondayTrade-Spot/e474fa4f0a46b28d1d1feb7fc69026e421d90820

ID DESCRIPTION SEVERITY STATUS

OYSTR-1 Ort?lers Are Filled Beyond the Taker's Price Limit Causing o Medium @ Fixed
Unintended Overpayment

OYSTR-2 MEV from Partially Filled Orders ® Medium ® Acknowledged
OYSTR-3 Unrestricted Withdrawal Function Allows Arbitrary Caller ® Low ® Acknowledged
OYSTR-4 Possibility of Arithmetic Overflow Leading to Dos ® Low ® Fixed
OYSTR-5 Inconsistent Nonce Increment when Canceling Order ® Low ® Fixed
OYSTR-6 Order Cancellation Griefing ® Low ® Acknowledged

Missing divisibility check between tickSpacing and .
OYSTR-7) . ® Low ® Fixed
orderTickSpacing

OYSTR-8 Insufficient In-Code and Technical Documentation ® Low ® Mitigated

_maxNonceInRange() scans every tick instead of stepping . .
OYSTR-9 . . ® Informational ® Fixed
by orderTickSpacing

OYSTR-10 No Upper Limit for Fee Values ® |nformational ©® Fixed
OYSTR-11 Minimum Order Amount May Be Set for Uninitialized Tokens ® Informational ® Acknowledged

Tick Spacing Exceeding 256 Ticks Creates Gaps in Order .
OYSTR-12 pacing 9 P e Informational ® Fixed
Placement

OYSTR-13 Misleading Event Emission ® Informational ® Fixed

Assessment Breakdown

Quantstamp's objective was to evaluate the repository for security-related issues, code quality, and adherence to specification and best
practices.

©® Disclaimer

Only features that are contained within the repositories at the commit hashes specified on the front page of the report are within the
scope of the audit and fix review. All features added in future revisions of the code are excluded from consideration in this report.

Possible issues we looked for included (but are not limited to):

e Transaction-ordering dependence

e Timestamp dependence

e Mishandled exceptions and call stack limits

¢ Unsafe external calls

¢ Integer overflow / underflow

e Number rounding errors

e Reentrancy and cross-function vulnerabilities
e Denial of service / logical oversights

e Access control

e Centralization of power

e Business logic contradicting the specification
e Code clones, functionality duplication

e Gas usage

e Arbitrary token minting

Methodology

1. Code review that includes the following

1. Review of the specifications, sources, and instructions provided to Quantstamp to make sure we understand the size, scope, and
functionality of the smart contract.
2. Manual review of code, which is the process of reading source code line-by-line in an attempt to identify potential vulnerabilities.
3. Comparison to specification, which is the process of checking whether the code does what the specifications, sources, and instructions
provided to Quantstamp describe.
2. Testing and automated analysis that includes the following:
1. Test coverage analysis, which is the process of determining whether the test cases are actually covering the code and how much code is
exercised when we run those test cases.
2. Symbolic execution, which is analyzing a program to determine what inputs cause each part of a program to execute.
3. Best practices review, which is a review of the smart contracts to improve efficiency, effectiveness, clarity, maintainability, security, and
control based on the established industry and academic practices, recommendations, and research.
4. Specific, itemized, and actionable recommendations to help you take steps to secure your smart contracts.

Scope

The scope focused on all the files that are unique to the Monday Trade protocol and not the contracts that are largely untouched from their
Uniswap V3 fork (forked at commit d8b1c635c275d2a9450bd6a78f3fa2484fef73eb).

Files Included

contracts

— BUProxy.sol

I— Config.sol

I— LiquidityHandler.sol
— MondayFactory.sol

|— MondayPool.sol

|—— MondayPoolDeployer.sol
— OrderHandler.sol

— SwapHandler.sol

— libraries

| — Tick.sol

| I— TickBitmap.sol
— pearl
| |— Broker.sol
| — LibMath.sol
| — LibOrder.sol
— periphery

L— SwapRouter.sol

Files Excluded

contracts

— MondayPoolStorage.sol
— NoDelegateCall.sol
|— Ownable2Step.sol

|— interfaces

— callback

| ==

|

|

|

|

|

— libraries
| |— BitMath.sol

| — FixedPoint128.so0l
| |— FixedPoint96.sol

| — FullMath.sol

| |— LICENSE

| |— LICENSE_MIT

| | LiquidityMath.sol
| — LowGasSafeMath.sol
| |— oracle.sol

| — Position.sol

| — safeCast.sol

| — SartPriceMath.sol
| |— swapMath.sol

| — TickMath.sol

| — TransferHelper.sol
| L — uUnsafeMath.sol

I— NonfungiblePositionManager.sol
— NonfungibleTokenPositionDescriptor.sol

|— base

|

|— interfaces

| — external

]
|

| ==

— periphery
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

Operational Considerations

e If the makerFee is a negative value, the protocol earns the leftover fee when the maker's share is deducted from the taker's fees. If the
-makerFee is exactly equalto takerFee , for example —(-0.3) = 0.3 in OrderHandler._updateProtocolFees() , then there
is nothing left of the taker's fee because everything goes to the maker, and the protocol does not earn any fees.

e The OrderHandler.place() function only allows placing orders at ticks between -500,000 and 500,000, while Uniswap liquidity can
be placed between tick -887,272 and tick 887,272. It's unlikely that the price for tokens would move outside of the 500,000 tick range, but
if it does, orders could no longer be placed.

e Swap execution may be subject to more variable slippage than traditional AMMSs. Specifically, if large limit orders at a tick are canceled
before a user’s transaction is processed, the user may experience a sudden shift from effectively zero slippage (with sufficient resting
liquidity) to standard AMM slippage. This behavior is expected given the hybrid orderbook—-AMM design and should be factored into user
and integrator assumptions around execution guarantees.

Key Actors And Their Capabilities

Factory Owner

Responsibilities

The Factory Owner governs protocol-level settings for the Monday Trade - Spot Order Book through the IUniswapV3Factory . This role
manages protocol fees, pool creation, and configuration.

Trust Assumptions

¢ Will not maliciously adjust fee parameters to extract excessive value from users.
* Will maintain pool configurations in a way that preserves order validation and fair execution.
e Will not use protocol fee authority to destabilize the market.

Exclusive Functions

1. lUniswapV3Factory (referenced via factory):
1. Control pool creation and configuration.
2. Set and update protocol fee parameters (_updateProtocolFees()).
3. Modify fee collection mechanisms impacting protocol revenue.

Config Admin

Responsibilities

The Config Admin manages order-level parameters through the Config contract (accessed from IUniswapV3Factory.factory). This
includes setting fee structures and trade requirements, directly affecting order placement and execution.

Trust Assumptions

o Will not set extreme fee parameters that drain liquidity or harm traders.

e Will set minOrderAmount values that prevent dust orders without enabling denial-of-service.

¢ Will not manipulate order maker fees or taker fees to unreasonably favor specific actors.
Exclusive Functions

1. IConfig (via factory.config()):
1. minOrderAmount () : Configure minimum order amounts per token.
2. getOrderMakerFee() : Set fees or rebates for order makers.
3. getOrderTakerFee() : Set fees for order takers.
4. Update additional order-specific parameters as needed.

Liquidity Provider

Responsibilities

The liquidity provider is a role inherited from the UniswapV3 protocol. These are the users who deposit and lock up their funds to be used as
liquidity traded in accordance with the AMM price curve.

Order Maker

Responsibilities

The Order Maker places limit orders on specific ticks within the Monday Trade Spot order book. They provide liquidity by placing orders that wait
to be filled by counterparties, earning potential maker fees or rebates based on the configured fee structure.

Order Taker

Responsibilities

The Order Taker executes against existing limit orders through the SwapHandler contract, consuming available order liquidity at specific ticks.
They pay taker fees for immediate execution against maker orders and drive price discovery through their trading activity. Note that order takers
cannot choose which limit order they want to take; rather they must always trade through the oyster swap algorithm, which either provides AMM
or orderbook liquidity depending on what is available at the current tick.

Findings

OYSTR-1
Orders Are Filled Beyond the Taker's Price Limit Causing * Medium ® Fixed
Unintended Overpayment

@ Update

Marked as "Fixed" by the client.
Addressed in: 228f5cab805840af30de94f5e7d0cd210b86a80e .
The client provided the following explanation:

add X96Limit check after _stepToNextTick in small loop

File(s) affected: SwapHandler.sol

Description: In the inner loop of _swapCrossRange() (L382-492), orders at future order ticks can be filled even when swap() stops at

sqrtLimitX96 before the AMM price reaches those ticks. The current guard (amountRemaining == @ L410) only covers fully completed
swaps where the AMM filled the whole swap amount, not limit-stopped swaps. This allows order to be filled beyond the actual reached price
boundary, leading takers to pay more than their limit.

Exploit Scenario:
Prerequisite: AMM liquidity exists across the current swap interval, and orders are placed at order ticks further inside that interval.
1. A taker starts a swap with a price limit (sqrtLimitX96), moving price within the current swap interval.
2. The AMM advances toward the next order tick, but the swap hits the limit inside the interval (amount remaining > O; price does not reach that
order tick).
3. The swap function enters the inner matching loop and scans for the next order tick in the swap direction.
4. Because the price check is missing, it selects that future order tick even though the price of the order tick was not reached
(state.sqrtPriceX96 != TickMath.getSqrtRatioAtTick(orderTick)).
5. It proceeds to fill orders at the unreached tick, increasing partialFilledSize and charging the taker.
6. Outcome: part of the swap executes at a worse price than the taker’s limit (orders filled beyond the actually reached boundary).

Recommendation: Only fill orders at a tick when the AMM has actually reached it. Two possible ways to enforce that are the following:
1. Cap the inner-loop “finalTick” by the tick at the sqrtLimitX96 (direction-aware), so you only consider order ticks up to the limit and not
beyond the next swap boundary.
2. After stepping toward an order tick, only fill if the AMM actually reached that tick (state.sqrtPriceX96 == sqrtRatioAtTick)

OYSTR-2 MEV from Partially Filled Orders o Medium ©® Acknowledged

©® update

Marked as "Acknowledged" by the client.
The client provided the following explanation:

Since our partialFill and withdraw mechanisms need to preserve the current situation, the code will not
change. Document has updated in this public link: https://ribbon-roast-c38.notion.site/Integration-
Instruction—-en-1f5c@ald6a2e8046a263df92fdd49255

File(s) affected: SwapHandler.sol , OrderHandler.sol

Description: When an order at a tick is partially filled, the orderNonce does notincrement. Any subsequent orders placed at that tick will
therefore inherit the same nonce. This creates two classes of exploit scenarios:

1. Race to Withdraw Profits:
Once an order is partially filled, the filled amount can only be withdrawn once. Whoever calls withdraw() first will receive the tokens. This
means that if the original order owner is not actively monitoring, another party can place a new order at that tick and immediately withdraw the
already-filled portion. The original order owner may “never” be able to claim their rightful tokens.

2. Front-Running on Partial Fill;
A trader can observe that an order at a tick has been partially filled (via mempool monitoring), quickly place their own order at the same tick, and
immediately call withdraw() . This allows them to claim the partially filled amount risk-free, and then proceed to trade at the updated market
price.

This behavior creates a risk-free profit opportunity (MEV) for active traders at the expense of passive order owners. Original users are forced to
wait until the price once again returns to their tick before they can potentially recoup value.

This attack vector is feasible in both private and public mempools. In public mempools, it is significantly worse, since attackers can easily attempt
to position their withdrawal transactions directly after a swap that caused a partial fill.

Exploit Scenario:
e Setup: ETH/USDC pool, price = 3000. Alice places 1 ETH sell order at tick 75100.
e Partial Fill: A buyer takes 0.4 ETH. Alice earns 1200 USDC, but orderNonce (5) is unchanged. partialFilledSize = 0.4 .
¢ Exploit:
1. Bob sees the fill.
2. Places 0.4 ETH order at same tick - inherits nonce 5.
3. Calls withdraw() , passes checks, and withdraws 1200 USDC from Alice’s partial fill.
4. partialFilledSize reduced to O.
e Impact: Alice’s rightful 1200 USDC is already claimed. She must wait for price to return or cancel her order at a loss.

Recommendation: Either document the risks clearly to the user or ensure that anyone who places an order after a trade partially fills that tick will
not be able to withdraw profits from that order specifically.

OYSTR-3

. . . . ® Low ©® Acknowledged
Unrestricted Withdrawal Function Allows Arbitrary Caller

©® update

Marked as acknowledged since the removal of the function in the router does not restrict the caller of the withdrawal function in any
way.

©® update

Marked as "Mitigated" by the client.
Addressed in: a65f29807945c17bf82ce79bdb%9a646377fa2524 .
The client provided the following explanation:

In order to allow for flexible withdrawal, the withdraw() function keeps not imposing any permission
restrictions. The withdraw function in swapRouter() is actually useless and we have deleted it.

File(s) affected: SwapRouter.sol , MondayPool.sol

Description: The withdraw() function does not enforce that the caller is the user , allowing anyone to initiate withdrawals on behalf of
another user. While this design may be intentional to support the SwapRouter.withdraw() flow, it represents a deviation from standard
access control practices. The severity is limited since funds always reach their rightful owner and no further state changes are possible once an
order becomes withdrawable.

However, the caller's ability to control the needNativeToken parameter is problematic, as it determines whether tokens are withdrawn as ETH
or WETH. In scenarios where the receiver can only handle one token type, selecting the incorrect format would cause the withdrawn tokens to
become stuck at the receiver address.

Recommendation: Add validation to ensure msg.sender is either the SwapRouter contract or matches the user parameterin
withdraw() . Apply the same validation inside SwapRouter.withdraw() .

OYSTR-4 Possibility of Arithmetic Overflow Leading to Dos Low ® Fixed

@ Update

Marked as "Fixed" by the client.
Addressed in: 08ea2ffc5ff8f662280e7824dd1f04918cf7elf7 .

File(s) affected: LibOrder.sol

Description: The _calAmountAtCurrentTick() function, when calculating the amount of tokenl duringa zeroForOne trade, computes
uint256(sgrtPriceX96) x uint256(size) asinput forthe mulDiv () function. This calculation can overflow and cause DoS when
placing or canceling orders with huge size at high ticks.

Exploit Scenario:
Below is a table outlining when an overflow would occur when the max tick is used:

| ==~ |- | ——————- | ==~ |
| 500,000 | 5.70 x 10736 | 20.32 x 10"36 | 5.97% |

Recommendation: Use the same approach as in the other case within this function by first calculating half of the result, storing it in a temporary
variable, and then finalizing the computation.

OYSTR-5 Inconsistent Nonce Increment when Canceling Order * Low ©® Fixed

@ Update

The nonce is now also incremented when the normal cancel path reduced innerSize to O.

@ Update

Marked as "Fixed" by the client.
Addressed in: 3200b451d28c3f5f8289d807228bb623e3b42174 .

File(s) affected: Broker.sol

Description: Broker._placeSingleTickOrder () is used for both placing and canceling orders. During order cancelation, two paths exist:

e Normal cancel (innerSize = amount):reduce innerSize by amount; nonce is not incremented; partialFilledSize is
unchanged. If this takes innerSize to O, the order tick nonce stays unchanged.
e Partial-filled cancelation (innerSize < amount): set amountto innerSize ; set innerSize to 0; increment the order-tick nonce
(nonceO/noncel); clear partialFilledSize .
The inconsistency is: Both paths can end with “no unfilled liquidity” (innerSize = @), but:

¢ Normal cancelation keeps the same nonce and leaves partialFilledSize
¢ Partial-filled cancel bumps the nonce and clears partialFilledSize
This changes flow for users:

e After normal cancel-to-zero: users can still pass the tickNonce <= userNonce check and later use cancel() or withdraw()
e After partial-filled cancelation: stale userNonce fails the check (“Order filled”); users must use withdraw()
No critical problem arises from this inconsistency but it may impact the user experience.

Recommendation: When a normal cancel reduces innerSize to 0, also increment the corresponding nonce@/noncel and set
partialFilledSize = @ so both cancel paths close the generation consistently. This makes behavior uniform and keeps cancel/withdraw
gating the same across cases.

OYSTR-6 Order Cancellation Griefing Low ® Acknowledged

©® update

Marked as "Acknowledged" by the client.
The client provided the following explanation:

We believe that adding a time lock cannot completely prevent this problem. In addition, just-—-in-time
attacks are also common in AMM, so we decided that this situation does not require further
restrictions.

File(s) affected: OrderHandler.sol , SwapHandler.sol
Description: Order cancellation is permissionless for the order owner. This allows the owner to cancel just before execution, forcing swappers to
use AMM liquidity at less favorable prices.

Note this attack is only possible if the attacker can listen in on transactions before they land on chain.

Recommendation: Consider adding cancellation restrictions such as time locks, or document the risk clearly to users.

OYSTR-7 o
o o o o og ege ® [ow IX
MlSSlng lelSlblllty check between tickSpacing and orderTickSpacing

@ Update

Marked as "Fixed" by the client.
Addressed in: ff5cfe416c01b25e8dd893c14a9d289ccdebc3d8 .

File(s) affected: MondayFactory.sol , MondayPool.sol
Description: The contracts validate that tickSpacing >= orderTickSpacing but do not enforce that tickSpacing is an exact multiple of
orderTickSpacing . Without this divisibility check, configurations can be created where the two spacings are misaligned, leaving calculations

that rely on predictable tick intervals inconsistent.

Recommendation: Add a check at pool creation to ensure divisibility:

require(_tickSpacing % orderTickSpacing == 0, "InvalidTickSpacing");

This guarantees that calculations based on tick alignment remain consistent.

OYSTR-8 Insufficient In-Code and Technical Documentation e Low ® Mitigated

©® update

Substantial whitepaper improvements (279 insertions, 194 deletions) but minimal NatSpec additions to contracts; code documentation
remains sparse. The issue is marked "mitigated" because improvements to documentation are not substantial enough for a full fix,
though we recognize many improvements were made in this regard.

@ Update

Marked as "Fixed" by the client.
Addressed in: d53cd5b30116a33ef696fb53797d68e562e0bbaa .

File(s) affected: A1l Contracts

Description: The protocol includes a well-written and detailed whitepaper, but there is a gap between the theoretical design and the
implementation. Current documentation does not adequately:

e Use NatSpec and inline code comments to explain contract behavior.

e Map variables and functions in the codebase to their counterparts in the whitepaper.

e Provide developer-focused technical documentation on how the whitepaper design is realized in code. This makes it harder for auditors
and developers to verify correctness or follow the implementation logic directly from the whitepaper.

Recommendation:
¢ Increase NatSpec coverage for all public and critical functions.
e Add inline code documentation clarifying variable purposes and design rationale.
e Provide a technical guide that explicitly maps whitepaper concepts to code (e.g., which variables and functions implement specific
equations or mechanisms).
e Ensure consistent terminology between the whitepaper, code, and documentation.

OYSTR-9
_maxNonceInRange() Scans every tick instead of stepping by e Informational ® Fixed

orderTickSpacing

@ Update

Marked as "Fixed" by the client.
Addressed in: dce@ffbal9234ef5le26befc63f7e5fae2736d60 .

File(s) affected: LibOrder.sol

Description: _maxNonceInRange() linearly scans every tick between range bounds, even though only order ticks (separated by a constant
orderTickSpacing) can hold meaningful order state. This produces unnecessary SLOAD s and makes gas cost scale with the interval size
rather than the count of actual order ticks.

Recommendation: Iterate only over order ticks. Align the start to the first multiple in [lowerTick, upperTick) and step by
orderTickSpacing :

Alternatively, use the existing order-bitmaps to jump to initialized order ticks within the range, or maintain per-range aggregated max nonces to
avoid iteration entirely.

OYSTR-10 No Upper Limit for Fee Values ® Informational ® Fixed

@ Update

Marked as "Fixed" by the client.
Addressed in: ecbhad8bb01600b9basdl4e375bab847d2c9b8aas and 5b81l64abdflPaaf746741facc07a43113b973c46 .

File(s) affected: config.sol

Description: The Config.resetOrderFee() function allows setting maker and taker fees for the entire protocol, but does not enforce any
upper limit on the values. It even allows to set fee values over 100% which may cause calculations to produce unexpected results.

Recommendation: Implement an upper limit on fee values. Since newMakerFee may be negative, the limit should be applied to its absolute
value.

OYSTR-11
Minimum Order Amount May Be Set for Uninitialized ® Informational ® Acknowledged
Tokens

©® update

Marked as "Acknowledged" by the client.
The client provided the following explanation:

The setMinOrderAmount() function in config.sol is designed to be able to change the minOrderAmount of a
token that has already been set.

File(s) affected: config.sol

Description: The Config.setMinOrderAmount() does not check if the provided token parameter is already initialized or not, and allows
setting min amount for any token address.

Recommendation: Consider ensuring the token is already initialized by checking if the existing value of minOrderAmount[token] is not 0.

OYSTR-12
Tick Spacing Exceeding 256 Ticks Creates Gaps in Order ® Informational ® Fixed
Placement

@ Update

Marked as "Fixed" by the client.
Addressed in: 275d06ccb6ac3t3295ae6062192c435bef8b3f4d2 .

File(s) affected: MondayFactory.sol , TickBitmap.sol

Description: The inner bitmap implementation which tracks order ticks restricts tick spacing to a maximum of 256. The
TickBitmap.flipTickWithBitmap() function calculates bit positions as the absolute difference between order ticks and swap ticks, with
bounds validation that reverts when this difference reaches 256 or greater. Tick spacings exceeding 256 create gaps in order placement
coverage in which placing orders becomes impossible.

Recommendation: Document the 256 tick spacing limitation and enforce it in the MondayFactory.enableFeeAmount() function by adding
validation to reject tick spacings greater than 256.

OYSTR-13 Misleading Event Emission ® Informational ® Fixed

@ Update

Marked as "Fixed" by the client.
Addressed in: 2aecbf7332ac47944fcd8el0ccd8962b0150at54 and 0©24d4087c18cb908ac9cb4calccd78735db02f9c .

File(s) affected: config.sol
Description: The Config.addTokens() function emits the TokensAdded() event at the end. However, the value provided to the event is
the tokens array, which contains all existing tokens in the system, rather than the newly added tokens in the _tokens array.

Additionally, the logic of addTokens () allows this function to be called only for updating the minOrderAmount for tokens, rather than adding
new tokens, in which case emitting TokensAdded() is unnecessary. Ideally, this function would only be used for adding tokens, as the
setMinOrderAmount () function already exists for adding existing tokens.

Similarly, the Config.removeTokens() function suffers from the same issue when emitting the TokensRemoved() event.

Recommendation: Ensure that the correct set of tokens (i.e., the _tokens array) is emitted in these events.

Auditor Suggestions

S1 'Dead' Code Fixed

@ Update

Marked as "Fixed" by the client.
Addressed in: b96e0f9f843b9e4f36aa9423379adb4bb4chtestl8 .

File(s) affected: TickBitmap.sol, LibMath.sol
Related Issue(s): SWC-131, SWC-135

Description: "Dead" code refers to code which is never executed and hence makes no impact on the final result of running a program. Dead code
raises a concern, since either the code is unnecessary or the necessary code's results were ignored.
e TickBitmap.getSwapTick() is notused anywhere and also seems wrong since it does not handle the edge cases outlined in
flipTickwithBitMap() .
e TickBitmap#L103-106 remove commented out code.
e LibMath.sol from the whole file only LibMath.maxUint128() is used.
e LibMath.maxUint128() is only used twice in the Broker contract and thus should be moved there.

Recommendation: We recommend to remove any unused code.

S2 Clarify Terminology Fixed

https://smartcontractsecurity.github.io/SWC-registry/docs/SWC-131
https://smartcontractsecurity.github.io/SWC-registry/docs/SWC-135

©® update

Please note that several instances of swap tick still exists in tests and latex format white paper.

@ Update

Marked as "Fixed" by the client.
Addressed in: cl12c®7af7b2cddalbefe4308993f9d7a6a804a23 .

File(s) affected: Broker.sol
Description: The words swap tick and range tick in functions and variables are used as synonymes.

Recommendation: For clarity, choose one of the two terms and stick to it.

S3 Missing Input Validation

©® update

All fixed, except for 2, which validate the config but not the wETH.

@ Update

Marked as "Fixed" by the client.
Addressed in: 99244c67864f124bT7ea9071db6453932244a08F .

File(s) affected: MondayFactory.sol , MondayPool.sol , OrderHandler.sol

Fixed

Description: There are several key functions within the codebase that lack proper input parameter validations. A non-exhaustive list of such

function parameters is provided below:

1. The constructor of the MondayPool contract does not validate any of its parameters. Since these are assigned to immutable values, it is

especially important to validate these addresses against address(9) .
2. The constructor of the MondayFactory contract does not validate the _config and _weth parameters against address(0) .
3. The MondayFactory.setOwner() function does not validate the _owner address against address(0) .

4. The MondayFactory.setNewOrderTickSpacing() function does not validate the newOrderTickSpacing parameter against illegal

values such as 0.
5. Add require(targetTick % int128(orderTickSpacing) == 0, 'Illegal Order Tick'); inthe

OrderHandler._clearUserWithdraw() function to ensure the call does not fail silently, and the function remains consistent with other

functions in the contract.

Recommendation: Consider adding extra input validations throughout the code. Even for administrative functions, it is still recommended to

include input validations to ensure proper security. The above list highlights the most important functions that lack such validations.

S4 General Code Improvements Fixed

@ Update

Marked as "Fixed" by the client.

Addressed in: 109f4a6d3d46a5911163f19d6adea88beffbf465 .

The client provided the following explanation:

Expect 2. The config contract is upgradeable, and the pool address may be used in the future.
File(s) affected: config.sol, MondayPool.sol , OrderHandler.sol , TickBitmap.sol
Description:

1. Fixed —Inthe Config.addTokens() function, add a validation to ensure that the sizes of the two input arrays _tokens and
_minOrderAmounts are equal.

2. N/A — Remove the pool address parameter from the two functions getOrderTakerFee() and getOrderMakerFee() inthe
Config contract.

3. Fixed — Consider adding _disableInitializers() in the constructor of the MondayPool contract.

4. Fixed —Inthe OrderHandler.place() function,the isToken® variable is introduced via bool isToken® = size > @ ? true
: false; . However, the same logic (size > @ ? true : false) is later repeated in the code instead of using the local variable
isTokeno .

5. Fixed —In OrderHandler.place():L77~88 , the sequence of if and else branches is based onthe size parameter. The last

else branchrevertsif size is @ . To improve code readability and gas consumption, you can add an input validation to ensure that

size isnot @ atthe beginning of the function instead.

6. Fixed —In TickBitmap.flipTickWithBitmap() ,the diff local variable is calculated via the abs() function, therefore it cannot
be negative, and the validation if (diff < @ || diff >= 256) online 54 is unnecessary. The same issue also exists in the
nextOrderTickWithinOneWord() function of the same library.

Recommendation: Consider applying the above suggestions to improve the general state of the code.

S5 Failing and Incomplete Test Suite Fixed

@ Update

As of most recent commit a90133ce52ced24190d1a478819842fFf4delbbd5b the test suite results:

959 passing (28s)
20 pending

@ Update

Marked as "Fixed" by the client.
Addressed in: ea27000a0beb4d459a81b2ab4e3145a68891ae30 .
The client provided the following explanation:

In fact, our main added process should be in forge test. However, due to the limitation of solc
compilation version, we encountered an unresolvable stack too deep error when running forge coverage.
All but one of the hardhat tests passed. I fixed this test in the commit. The snapshot test error will
be resolved after deleting the original snapshot file.

File(s) affected: tests

Description: The test suite spans all major files and contracts but is unreliable in its current state:
¢ 132 failing tests out of 1219 total (~10.83% failure rate).
e 20 pending tests not yet implemented.
¢ No coverage report generated, preventing visibility into untested areas.
e Multiple naming/parameter mismatches in error handling suggest the suite is not consistently run. This reduces confidence in the
correctness of the implementation and increases the risk of undetected bugs.

Recommendation: - Resolve failing and pending tests.
e Generate and maintain coverage reports.
e Ensure consistent execution of the suite as part of the development process.
e Align error strings and parameter names between implementation and tests

Definitions

High severity — High-severity issues usually put a large number of users' sensitive information at risk, or are reasonably likely to lead to
catastrophic impact for client's reputation or serious financial implications for client and users.

o — Medium-severity issues tend to put a subset of users' sensitive information at risk, would be detrimental for the client's
reputation if exploited, or are reasonably likely to lead to moderate financial impact.

e Low severity — The risk is relatively small and could not be exploited on a recurring basis, or is a risk that the client has indicated is low
impact in view of the client's business circumstances.

¢ Informational - The issue does not pose an immediate risk, but is relevant to security best practices or Defence in Depth.
¢ Undetermined — The impact of the issue is uncertain.

¢ Fixed - Adjusted program implementation, requirements or constraints to eliminate the risk.

e Mitigated — Implemented actions to minimize the impact or likelihood of the risk.

e Acknowledged — The issue remains in the code but is a result of an intentional business or design decision. As such, it is supposed to be
addressed outside the programmatic means, such as: 1) comments, documentation, README, FAQ; 2) business processes; 3) analyses
showing that the issue shall have no negative consequences in practice (e.g., gas analysis, deployment settings).

Test Suite Results

Test suite is comprehensive and spans all major files and contracts. There are two majour areas of concern:

1. There are a total of 132 failing tests (1067 passing, and 20 pending). This means approximately 10.83% of the test suite is failing. This should
be immediately and urgently addressed by the team.
Note, though coverage data is lacking this reflects a limitation of the solc compiler at the moment rather than the issues with the test suite.

FIX-REVIEW UPDATE: New test results:

959 passing (28s)
20 pending

All tests are successfully passing, a substantial improvement. Furthermore, we have been made aware of an additional foundry-based test suite,
whose output is now appended immediately below the hardhat tests.

Creating Typechain artifacts in directory typechain for target ethers-v5

Successfully generated Typechain artifacts!

BitMath
#mostSignificantBit
v 0
v 1
vV 2
v all powers of 2 (123ms)
v uint256(-1)
v
4

gas cost of smaller number

gas cost of uint128
v gas cost of uint256
#leastSignificantBit
v 0

v 1

v 2

v all powers of 2 (94ms)

v uint256(-1)

v gas cost of smaller number
v gas cost of uint128

v gas cost of uint256

FullMath
— check a bunch of random inputs against JS implementation
#mulDiv

v reverts if denominator is ©

v reverts if denominator is © and numerator overflows

v reverts if output overflows uint256

v reverts if output overflows uint256

v reverts on overflow with all inputs

v all inputs

v accurate without phantom overflow

v accurate with phantom overflow

v accurate with phantom overflow and repeating decimal
#mulDivRoundingUp

v reverts if denominator is ©

reverts if denominator is © and numerator overflows

reverts if output overflows uint256

reverts on overflow with all inputs

reverts if mulDiv overflows 256 bits after rounding up
reverts if mulDiv overflows 256 bits after rounding up case 2
all inputs

accurate without phantom overflow

accurate with phantom overflow

AN N N N U N N NN

accurate with phantom overflow and repeating decimal

LiguidityMath

#addDelta
v 1 + 0

1+1

(%
(%4
4
4
4
4
v

1+ -1

©® + -1 underflows
3 + -4 underflows
gas add

gas sub

NoDelegateCall

v runtime

R X X X

overhead

2%%128-15 + 15 overflows

proxy can call the method without the modifier
proxy cannot call the method with the modifier
can call the method that calls into a private method with the modifier

proxy cannot call the method that calls a private method with the modifier

Oracle
#initialize
v index is ©
v cardinality is 1
v cardinality next is 1
v sets first slot timestamp only
v gas
#grow
v increases the cardinality next for the first call
v does not touch the first slot
v is no op if oracle is already gte that size
v adds data to all the slots
v grow after wrap
v gas for growing by 1 slot when index == cardinality - 1
v gas for growing by 10 slots when index == cardinality - 1
v gas for growing by 1 slot when index != cardinality - 1
v gas for growing by 10 slots when index != cardinality - 1
#write
v single element array gets overwritten
v does nothing if time has not changed
v writes an index if time has changed
v grows cardinality when writing past
v wraps around
v accumulates liquidity
#observe

before initialization

(%

fails before initialize

fails if an older observation does not exist

does not fail across overflow boundary

interpolates
interpolates
interpolates

interpolates

correctly at max liquidity
correctly at min liquidity
the same as 0 liquidity for 1 liquidity

correctly across uint32 seconds boundaries

single
single
single
single

single

observation
observation
observation
observation

observation

at
in
in
in

in

current time

past but not earlier than secondsAgo

past at exactly seconds ago

past counterfactual in past

past counterfactual now

two
two
two
two
two
two

two

AN N U N U N N U N N U N N N N U U NN

two

observations
observations
observations
observations
observations
observations
observations

observations

in
in
in
in
in
in
in

in

chronol
chronol
chronol
chronol
reverse
reverse
reverse

reverse

ogical
ogical
ogical
ogical
order
order
order

order

order © seconds ago exact

order © seconds ago counterfactual
order seconds ago is exactly on first observation
order seconds ago is between first and second
@ seconds ago exact
@ seconds ago counterfactual

seconds ago is exactly on first observation

seconds ago is between first and second

v can fetch multiple observations

v gas for observe since most recent

v gas for single observation at current time

v gas for single observation at current time counterfactually computed
initialized with 5 observations with starting time of 5

v index, cardinality, cardinality next

v latest observation same time as latest

v latest observation 5 seconds after latest

v current observation 5 seconds after latest

v between latest observation and just before latest observation at same time as latest
v between latest observation and just before latest observation after the latest observation
v older than oldest reverts

v oldest observation

v oldest observation after some time

v fetch many values

v gas all of last 20 seconds

v gas latest equal

v gas latest transform

v gas oldest

v gas between oldest and oldest + 1

v gas middle

initialized with 5 observations with starting time of 4294967291
v index, cardinality, cardinality next
latest observation same time as latest
latest observation 5 seconds after latest
current observation 5 seconds after latest
between latest observation and just before latest observation at same time as latest
between latest observation and just before latest observation after the latest observation
older than oldest reverts
oldest observation
oldest observation after some time
fetch many values
gas all of last 20 seconds
gas latest equal
gas latest transform
gas oldest

gas between oldest and oldest + 1

AN N N N N N N U U N U N N N N

gas middle
full oracle
— has max cardinality next
— has max cardinality
— index wrapped around
— can observe into the ordered portion with exact seconds ago
— can observe into the ordered portion with unexact seconds ago
— can observe at exactly the latest observation
— can observe at exactly the latest observation after some time passes
— can observe after the latest observation counterfactual
— can observe into the unordered portion of array at exact seconds ago of observation
— can observe into the unordered portion of array at seconds ago between observations
— can observe the oldest observation 13%65534 seconds ago
— can observe the oldest observation 13%65534 + 5 seconds ago if time has elapsed
- gas cost of observe(0)
- gas cost of observe(200 x 13)
- gas cost of observe(200 x 13 + 5)
— gas cost of observe(®) after 5 seconds
— gas cost of observe(5) after 5 seconds
— gas cost of observe(oldest)

— gas cost of observe(oldest) after 5 seconds

SgrtPriceMath
#getNextSqrtPriceFromInput
v fails if price is zero

v fails if liquidity is zero

SR R S X X X X X

A\

fails if input amount overflows the price

any input amount cannot underflow the price
returns input price if amount in is zero and zeroForOne

returns input price if amount in is zero and zeroForOne

returns the minimum price for max inputs

input amount of ©.1 tokenl

input amount of ©.1 token®

amountIn > type(uint96).max and zeroForOne

can re
zeroFo

zeroFo

true

false

true

turn 1 with enough amountIn and zeroForOne = true

rOne

true gas

rOne = false gas

#getNextSqrtPriceFromOutput

v

TN S S R S X X S X X 1 X

<

fails
fails
fails
fails
fails
fails
succee
puzzli
return
return
output
output
revert
revert
zerofFo

zeroFo

if price is zero

if liquidity is zero

if output amount 1is

if output amount is

if output amount 1is

if output amount is

ds if output amount

ng echidna test

exactly the virtual reserves of token®

greater than virtual reserves of token®

greater than virtual reserves of tokenl

exactly the virtual reserves of tokenl

is just less than the virtual reserves of tokenl

s input price if amount in is zero and zeroForOne = true

s input price if amount in is zero and zeroForOne

amount of 0.1 tokenl
amount of 0.1 tokenl

false

s 1if amountOut is impossible in zero for one direction

s 1if amountOut is impossible in one for zero direction

rOne

rOne

#getAmount@Delta

4
4
4
v
v

(%

return

true gas

false gas

s 0 if liquidity is ©

returns @ if prices are equal

returns 0.1 amountl for price of 1 to

works for prices that overflow

gas cost for amount® where roundUp

gas cost for amount@ where roundUp

#getAmountlDelta

v returns 0 if liquidity is ©

v returns 0 if prices are equal

v returns 0.1 amountl for price of 1 to

v gas cost for amount@® where roundUp =

v gas cost for amount® where roundUp

swap computation

v sqrtP x sqrtQ overflows

1.21

true

true

1.21
true

false

amount in that gets capped at price target in one for zero

amount out that gets capped at price target in one for zero

amount in that is fully spent in one for zero

amount out that is fully received in one for zero

amount out is capped at the desired amount out

target price of 1 uses partial input amount

entire input amount taken as fee

handles intermediate insufficient liquidity in zero for one exact output case

handles intermediate insufficient liquidity in one for zero exact output case

SwapMath
#computeSwapStep

v exact

v exact

v exact

v exact

v

v

v

v

v

gas
v swap one for zero
v swap zero for one
v swap one for zero
v swap zero for one
v swap one for zero
v swap zero for one
v swap one for zero

exact
exact
exact
exact
exact
exact

exact

in capped
in capped
out capped
out capped
in partial
in partial

out partial

v swap zero for one exact out partial

Tick
#tickSpacingToMaxLiquidityPerTick
v returns the correct value for low fee
v returns the correct value for medium fee
v returns the correct value for high fee
v returns the correct value for entire range
v returns the correct value for 2302
#getFeeGrowthInside
v returns all for two uninitialized ticks if tick is inside
returns @ for two uninitialized ticks if tick is above
returns @ for two uninitialized ticks if tick is below

v
v
v subtracts upper tick if below
v subtracts lower tick if above
4

subtracts upper and lower tick if inside

AN

works correctly with overflow on inside tick
#update
v flips from zero to nonzero
does not flip from nonzero to greater nonzero
flips from nonzero to zero
does not flip from nonzero to lesser nonzero
does not flip from nonzero to lesser nonzero
reverts if total liquidity gross is greater than max
nets the liquidity based on upper flag
reverts on overflow liquidity gross

assumes all growth happens below ticks lte current tick

AN N U N U N N NN

does not set any growth fields if tick is already initialized
v does not set any growth fields for ticks gt current tick
#clear
v deletes all the data in the tick
#cross
v flips the growth variables

v two flips are no op

TickBitmap

#isInitialized

v is false at first

v is flipped by #flipTick

v is flipped back by #flipTick

v 1is not changed by another flip to a different tick

v is not changed by another flip to a different tick on another word
#flipTick

v flips only the specified tick

v reverts only itself

v gas cost of flipping first tick in word to initialized

v gas cost of flipping second tick in word to initialized

v gas cost of flipping a tick that results in deleting a word
#nextInitializedTickWithinOneWord

lte = false
v returns tick to right if at initialized tick
v returns tick to right if at initialized tick
v returns the tick directly to the right
v returns the tick directly to the right
v returns the next words initialized tick if on the right boundary
v returns the next words initialized tick if on the right boundary
v returns the next initialized tick from the next word
v does not exceed boundary
v skips entire word
v skips half word
v gas cost on boundary
v gas cost just below boundary
v gas cost for entire word

lte = true

returns same tick if initialized

returns tick directly to the left of input tick if not initialized
will not exceed the word boundary

at the word boundary

word boundary less 1 (next initialized tick in next word)
word boundary

entire empty word

halfway through empty word

boundary is initialized

gas cost on boundary

gas cost just below boundary

LA N U N N U N U N N NN

gas cost for entire word

TickMath
#getSqrtRatioAtTick
v throws for too low
v throws for too low
v min tick
min tick +1
max tick - 1

v

v

v min tick ratio is less than js implementation

v max tick ratio is greater than js implementation
v

max tick

v 1is at most off by 1/100th of a bips
v result
v gas

tick 50
v is at most off by 1/100th of a bips
v result
v gas

tick -100
v 1is at most off by 1/100th of a bips
v result
v gas

tick 100
v is at most off by 1/100th of a bips
v result
v gas

tick -250
v 1is at most off by 1/100th of a bips
v result
v gas

tick 250
v is at most off by 1/100th of a bips
v result
v gas

tick -500
v 1is at most off by 1/100th of a bips
v result
v gas

tick 500
v is at most off by 1/100th of a bips
v result
v gas

tick -1000
v 1is at most off by 1/100th of a bips
v result
v gas

tick 1000
v is at most off by 1/100th of a bips
v result

v gas

tick -2500
v 1s at most
v result
v gas

tick 2500
v is at most
v result
v gas

tick —-3000
v 1s at most
v result
v gas

tick 3000
v is at most
v result
v gas

tick -4000
v 1s at most
v result
v gas

tick 4000
v is at most
v result
v gas

tick -5000
v 1s at most
v result
v gas

tick 5000
v is at most
v result
v gas

tick -50000
v 1s at most
v result
v gas

tick 50000
v is at most
v result
v gas

tick -150000
v 1s at most
v result
v gas

tick 150000
v is at most
v result
v gas

tick -250000
v 1s at most
v result
v gas

tick 250000
v is at most
v result
v gas

tick -500000
v 1s at most
v result
v gas

tick 500000

v is at most

off

off

off

off

off

off

off

off

off

off

off

off

off

off

off

off

by

by

by

by

by

by

by

by

by

by

by

by

by

by

by

by

1/100th

1/100th

1/100th

1/100th

1/100th

1/100th

1/100th

1/100th

1/100th

1/100th

1/100th

1/100th

1/100th

1/100th

1/100th

1/100th

of

of

of

of

of

of

of

of

of

of

of

of

of

of

of

of

bips

bips

bips

bips

bips

bips

bips

bips

bips

bips

bips

bips

bips

bips

bips

bips

v result
v gas
tick -738203
v 1is at most off by 1/100th of a bips
v result
v gas
tick 738203
v is at most off by 1/100th of a bips
v result
v gas

#MIN_SQRT_RATIO

v equals #getSqrtRatioAtTick (MIN_TICK)

#MAX_SQRT_RATIO

v equals #getSqrtRatioAtTick (MAX_TICK)

#getTickAtSqrtRatio

v throws for too low
v throws for too high
v ratio of min tick
v ratio of min tick + 1
v ratio of max tick - 1
v ratio closest to max tick
ratio 4295128739
v 1is at most off by 1
v ratio is between the tick and tick+1
v result
v gas
ratio 79228162514264337593543950336000000
v is at most off by 1
v ratio is between the tick and tick+1
v result
v gas
ratio 79228162514264337593543950336000
v is at most off by 1
v ratio is between the tick and tick+1
v result
v gas
ratio 9903520314283042199192993792
v 1is at most off by 1
v ratio is between the tick and tick+1
v result
v gas
ratio 28011385487393069959365969113
v is at most off by 1
v ratio is between the tick and tick+1
v result
v gas
ratio 56022770974786139918731938227
v 1is at most off by 1
v ratio is between the tick and tick+1
v result
v gas
ratio 79228162514264337593543950336
v 1is at most off by 1
v ratio is between the tick and tick+1
v result
v gas
ratio 112045541949572279837463876454
v 1is at most off by 1
v ratio is between the tick and tick+1
v result
v gas
ratio 224091083899144559674927752909
v 1is at most off by 1

v ratio is between the tick and tick+1
v result
v gas

ratio 633825300114114700748351602688
v is at most off by 1
v ratio is between the tick and tick+1
v result
v gas

ratio 79228162514264337593543950
v 1is at most off by 1
v ratio is between the tick and tick+1
v result
v gas

ratio 79228162514264337593543
v 1is at most off by 1
v ratio is between the tick and tick+1
v result
v gas

ratio 1461446703485210103287273052203988822378723970341
v is at most off by 1
v ratio is between the tick and tick+1
v result
v gas

UniswapV3Factory

v owner is deployer

v factory bytecode size

v pool bytecode size

v initial enabled fee amounts

#createPool

v succeeds for low fee pool

succeeds for medium fee pool
succeeds for high fee pool
succeeds if tokens are passed in reverse
fails if token a == token b

fails if token a is © or token b is ©

R N X X <

fails if fee amount is not enabled
v gas
#setOwner
v fails if caller is not owner
v updates owner
v emits event
v cannot be called by original owner
#enableFeeAmount
v fails if caller is not owner
fails if fee is too great
fails if tick spacing is too small
fails if tick spacing is too large
fails if already initialized
sets the fee amount in the mapping

emits an event

S X X X | X

enables pool creation

UniswapV3Pool arbitrage tests
protocol fee = 0;
passive liquidity of ©0.010000

exact input of 10e18 token® with starting price of 1.0 and true price of 0.98
v not sandwiched
v sandwiched with swap to execution price then mint max liquidity/target/burn max liquidity

(60ms)

v backrun to true price after swap only

exact input of 10e18 token® with starting price of 1.0 and true price of 1.01

v not sandwiched

v sandwiched with swap to execution price then mint
(65ms)
v backrun to true price after swap only
passive liquidity of 1.0000
exact input of 10e18 token® with starting price of 1.0
v not sandwiched

v sandwiched with swap to execution price then mint

(59ms)
v backrun to true price after swap only
exact input of 10e18 token® with starting price of 1.0
v not sandwiched
v sandwiched with swap to execution price then mint
(62ms)

v backrun to true price after swap only
passive liquidity of 10.000
exact input of 10e18 token® with starting price of 1.0
v not sandwiched

v sandwiched with swap to execution price then mint

(57ms)
v backrun to true price after swap only
exact input of 10e18 token® with starting price of 1.0
v not sandwiched
v sandwiched with swap to execution price then mint
(63ms)

v backrun to true price after swap only
passive liquidity of 100.00
exact input of 10e18 token® with starting price of 1.0
v not sandwiched

v sandwiched with swap to execution price then mint

(56ms)
v backrun to true price after swap only
exact input of 10e18 token® with starting price of 1.0
v not sandwiched
v sandwiched with swap to execution price then mint
(71ms)

v backrun to true price after swap only (48ms)
protocol fee = 6;
passive liquidity of ©0.010000
exact input of 10e18 token® with starting price of 1.0
v not sandwiched

v sandwiched with swap to execution price then mint

(60ms)
v backrun to true price after swap only
exact input of 10e18 token® with starting price of 1.0
v not sandwiched
v sandwiched with swap to execution price then mint
(115ms)

v backrun to true price after swap only
passive liquidity of 1.0000
exact input of 10e18 token® with starting price of 1.0
v not sandwiched

v sandwiched with swap to execution price then mint

(62ms)
v backrun to true price after swap only
exact input of 10e18 token® with starting price of 1.0
v not sandwiched
v sandwiched with swap to execution price then mint
(64ms)

v backrun to true price after swap only
passive liquidity of 10.000
exact input of 10e18 token® with starting price of 1.0
v not sandwiched

v sandwiched with swap to execution price then mint

liquidity/target/burn

and true price of 0.98

liquidity/target/burn

and true price of 1.01

liquidity/target/burn

and true price of 0.98

liquidity/target/burn

and true price of 1.01

liquidity/target/burn

and true price of 0.98

liquidity/target/burn

and true price of 1.01

liquidity/target/burn

and true price of 0.98

liquidity/target/burn

and true price of 1.01

liquidity/target/burn

and true price of 0.98

liquidity/target/burn

and true price of 1.01

liquidity/target/burn

and true price of 0.98

liquidity/target/burn

liquidity

liquidity

liquidity

liquidity

liquidity

liquidity

liquidity

liquidity

liquidity

liquidity

liquidity

liquidity

(204ms)
v backrun to true price after swap only
exact input of 10el18 token® with starting price of 1.0 and true price of 1.01
v not sandwiched
v sandwiched with swap to execution price then mint liquidity/target/burn
(85ms)
v backrun to true price after swap only
passive liquidity of 100.00
exact input of 10e18 token® with starting price of 1.0 and true price of 0.98

v not sandwiched

v sandwiched with swap to execution price then mint liquidity/target/burn
(60ms)
v backrun to true price after swap only
exact input of 10e18 token® with starting price of 1.0 and true price of 1.01
v not sandwiched
v sandwiched with swap to execution price then mint liquidity/target/burn
(65ms)

v backrun to true price after swap only

UniswapV3Pool gas tests
fee is off
#swapExactOForl

v first swap in block with no tick movement
first swap in block moves tick, no initialized crossings
second swap in block with no tick movement
second swap in block moves tick, no initialized crossings
first swap in block, large swap, no initialized crossings
first swap in block, large swap crossing several initialized ticks
first swap in block, large swap crossing a single initialized tick
second swap in block, large swap crossing several initialized ticks (38ms)

second swap in block, large swap crossing a single initialized tick

R R S X X < X < <«

large swap crossing several initialized ticks after some time passes

liquidity

liquidity

liquidity

v large swap crossing several initialized ticks second time after some time passes (45ms)

#mint

around current price

v new position mint first in range

v add to position existing

v second position in same range

v add to position after some time passes
below current price

v new position mint first in range

v add to position existing

v second position in same range

v add to position after some time passes
above current price

v new position mint first in range

v add to position existing

v second position in same range

v add to position after some time passes

#burn

around current price

v burn when only position using ticks

v partial position burn

v entire position burn but other positions are using the ticks

v burn entire position after some time passes
below current price

v burn when only position using ticks

v partial position burn

v entire position burn but other positions are using the ticks

v burn entire position after some time passes
above current price

v burn when only position using ticks

v partial position burn

v entire position burn but other positions are using the ticks
v burn entire position after some time passes
#poke
v best case
#collect
v close to worst case
#increaseObservationCardinalityNext
v grow by 1 slot
v ho op
#snapshotCumulativesInside
v tick inside
v tick above
v tick below
fee is on
#swapExactOForl
v first swap in block with no tick movement
first swap in block moves tick, no initialized crossings
second swap in block with no tick movement
second swap in block moves tick, no initialized crossings
first swap in block, large swap, no initialized crossings
first swap in block, large swap crossing several initialized ticks
first swap in block, large swap crossing a single initialized tick
second swap in block, large swap crossing several initialized ticks

second swap in block, large swap crossing a single initialized tick

AN N N N U N N NN

large swap crossing several initialized ticks after some time passes (40ms)
v large swap crossing several initialized ticks second time after some time passes (44ms)
#mint
around current price
v new position mint first in range
v add to position existing
v second position in same range
v add to position after some time passes
below current price
v new position mint first in range
v add to position existing
v second position in same range
v add to position after some time passes
above current price
v new position mint first in range
v add to position existing
v second position in same range
v add to position after some time passes
#burn
around current price
v burn when only position using ticks
v partial position burn
v entire position burn but other positions are using the ticks
v burn entire position after some time passes
below current price
v burn when only position using ticks
v partial position burn
v entire position burn but other positions are using the ticks
v burn entire position after some time passes
above current price
v burn when only position using ticks
v partial position burn
v entire position burn but other positions are using the ticks
v burn entire position after some time passes
#poke
v best case
#collect
v close to worst case

#increaseObservationCardinalityNext

v grow by 1 slot

v ho op
#snapshotCumulativesInside

v tick inside

v tick above

v tick below

UniswapV3Pool

v constructor initializes immutables

v tick transition cannot run twice if zero for one swap ends at fractional price just below tick
(74ms)

#initialize

v fails if already initialized

fails if starting price is too low
fails if starting price is too high
can be initialized at MIN_SQRT_RATIO
can be initialized at MAX_SQRT_RATIO - 1

sets initial variables

R XN X X <

initializes the first observations slot
v emits a Initialized event with the input tick
#increaseObservationCardinalityNext
v can only be called after initialize
v emits an event including both old and new
v does not emit an event for no op call
v does not change cardinality next if less than current
v increases cardinality and cardinality next first time
#mint
v fails if not initialized
after initialization
v protocol fees accumulate as expected during swap
v positions are protected before protocol fee is turned on
v poke is not allowed on uninitialized position (87ms)
failure cases
v fails if tickLower greater than tickUpper
fails if tickLower less than min tick
fails if tickUpper greater than max tick

fails if amount exceeds the max

R X X X

fails if total amount at tick exceeds the max (41ms)
v fails if amount is ©
success cases
v initial balances
v initial tick
above current price
v transfers token@ only
max tick with max leverage
works for max tick
removing works
adds liquidity to liquidityGross (54ms)
removes liquidity from liquidityGross
clears tick lower if last position is removed

clears tick upper if last position is removed

R R S X X X

only clears the tick that is not used at all

does not write an observation

<

including current price

AN

price within range: transfers current price of both tokens
initializes lower tick
initializes upper tick

works for min/max tick (186ms)

A N U N

removing works

v writes an observation
below current price

v transfers tokenl only

v min tick with max leverage

v works for tick
v removing works
v does not write an observation
#burn
v does not clear the position fee growth snapshot if no more liquidity (39ms)
v clears the tick if its the last position using it
v clears only the lower tick if upper is still used
v clears only the upper tick if lower is still used
#observe
v current tick accumulator increases by tick over time
v current tick accumulator after single swap
v current tick accumulator after two swaps
miscellaneous mint tests
v mint to the right of the current price
v mint to the left of the current price
v mint within the current price
v cannot remove more than the entire position
v collect fees within the current price after swap (43ms)
post-initialize at medium fee
k (implicit)
v returns 0 before initialization
post initialized
v returns initial liquidity
returns in supply in range
excludes supply at tick above current tick

excludes supply at tick below current tick

R X <

updates correctly when exiting range
v updates correctly when entering range
limit orders
v limit selling © for 1 at tick © thru 1
v limit selling 1 for 0 at tick © thru -1
fee is on
v limit selling © for 1 at tick © thru 1
v limit selling 1 for 9 at tick © thru -1
#collect
v works with multiple LPs
works across large increases
v works just before the cap binds
v works just after the cap binds
v works well after the cap binds
works across overflow boundaries
v token@
v tokenl
v token@ and tokenl

#feeProtocol

A

is initially set to ©

can be changed by the owner

cannot be changed out of bounds

cannot be changed by addresses that are not owner
position owner gets full fees when protocol fee is off
swap fees accumulate as expected (0 for 1)

swap fees accumulate as expected (1 for 0) (38ms)

position owner gets partial fees when protocol fee is on

R XN X X X X X

fees collected by 1p after two swaps should be double one swap
v fees collected after two swaps with fee turned on in middle are fees from last swap (not
confiscatory)
v fees collected by 1lp after two swaps with intermediate withdrawal
#collectProtocol
v returns 0 if no fees
v can collect fees
v fees collected can differ between token® and tokenl
#tickSpacing
tickSpacing = 12

post initialize
v mint can only be called for multiples of 12
v mint can be called with multiples of 12
v swapping across gaps works in 1 for © direction (38ms)
v swapping across gaps works in 0 for 1 direction
#flash
v fails if not initialized
v fails if no liquidity
after liquidity added
fee off

v emits an event

v transfers the amount® to the recipient
v transfers the amountl to the recipient
v can flash only token®
v can flash only tokenl
v can flash entire token balance
v no-op if both amounts are 0
v fails if flash amount is greater than token balance
v calls the flash callback on the sender with correct fee amounts
v increases the fee growth by the expected amount
v fails if original balance not returned in either token
v fails if underpays either token
v allows donating token®@
v allows donating tokenl
v allows donating token® and tokenl together
fee on
v emits an event
v increases the fee growth by the expected amount
v allows donating token@
v allows donating tokenl

v allows donating token® and tokenl together
#increaseObservationCardinalityNext
v cannot be called before initialization
after initialization
v oracle starting state after initialization
v increases observation cardinality next
v is no op if target is already exceeded

#setFeeProtocol

AN

can only be called by factory owner
fails if fee is 1t 4 or gt 10
succeeds for fee of 4

succeeds for fee of 10

sets protocol fee

can change protocol fee

can turn off protocol fee

emits an event when turned on

emits an event when turned off

R R S X X < X <«

emits an event when changed
v emits an event when unchanged
#lock
v cannot reenter from swap callback
#snapshotCumulativesInside
v throws if ticks are in reverse order
throws if ticks are the same
throws if tick lower is too low
throws if tick upper is too high
throws if tick lower is not initialized
throws if tick upper is not initialized
is zero immediately after initialize
increases by expected amount when time elapses in the range
does not account for time increase above range

does not account for time increase below range

R N X X X X X |

time increase below range is not counted

v time increase above range is not counted

v positions minted after time spent

v overlapping liquidity is aggregated

v relative behavior of snapshots

fees overflow scenarios

v up to max uint 128

v overflow max uilnt 128

v overflow max uint 128 after poke burns fees owed to ©

v two positions at the same snapshot (41ms)

v two positions 1 wei of fees apart overflows exactly once (52ms)

swap underpayment tests

v

AN N U N U U N U N N N

pay in the wrong token zero for one

pay in the wrong token zero for one

pay in the wrong token one for zero

pay in the wrong token one for

overpay one for zero and exact

UniswapV3Pool swap tests

underpay zero for one and exact in

and

overpay zero for one and exact in

underpay zero for one and exact out

and

overpay zero for one and exact out

underpay one for zero and exact in

and

overpay one for zero and exact in

underpay one for zero and exact out

zero and

out

low fee, 1:1 price, 2el8 max range liquidity

v swap
swap
swap
swap
swap
swap
swap
swap
swap
swap
swap
swap
swap
swap
swap

swap

=i N U N N U N U N N U N N U N N

H

me
swap
swap
swap
swap
swap
swap
swap
swap
swap
swap
swap
swap
swap

swap

AN N U N N N N U N N N N N R N

swap
v
high fee,

swap

v swap
v swap
v swap

exactly 1.0000 token@ for
exactly 1.0000 tokenl for
token@ for exactly 1.0000
tokenl for exactly 1.0000
exactly 1.0000 token@ for
exactly 1.0000 tokenl for
token@ for exactly 1.0000
tokenl for exactly 1.0000

tokenl
tokeno
tokenl
token®
tokenl to
token@ to
tokenl to
token@ to

exact

exact

exact

exact

price
price
price

price

in

out

in

out

0.50000
2.0000
0.50000
2.0000

exactly 0.0000000000000010000 token® for tokenl
exactly 0.0000000000000010000 tokenl for token®

token® for
tokenl for

exactly 0.0000000000000010000 tokenl
exactly 0.0000000000000010000 token® (38ms)

tokenl
token®
token@
tokenl

for
for
for

for

token® to
tokenl to
tokenl to
token® to

price 2.5000
price 0.40000
price 2.5000
price 0.40000

exactly 1.0000 token@ for
exactly 1.0000 tokenl for
token@® for exactly 1.0000
tokenl for exactly 1.0000
exactly 1.0000 token@ for
exactly 1.0000 tokenl for
token@® for exactly 1.0000
tokenl for exactly 1.0000

tokenl
token@
tokenl
tokeno
tokenl to
token® to
tokenl to
token® to

um fee, 1:1 price, 2el8 max range liquidity

price
price
price

price

0.50000
2.0000 (72ms)
0.50000
2.0000

exactly 0.0000000000000010000 token® for tokenl (118ms)
exactly 0.0000000000000010000 tokenl for token®

token@ for
tokenl
tokenl
tokeno
tokeno

tokenl

exactly 0.
for exactly 0.
token@ to
tokenl to
tokenl to

token® to

for price

for price
for price

for price

2.5000
0.40000
2.5000
0.40000

1:1 price, 2el8 max range liquidity

exactly 1.0000 token@ for
exactly 1.0000 tokenl for
tokend for exactly 1.0000

tokenl
token®
tokenl

0000000000000V 10000 tokenl
0000000000000010000 tokend

swap tokenl for exactly 1.0000 token®©

swap exactly 1.0000 token® for tokenl to price 0.50000
swap exactly 1.0000 tokenl for token® to price 2.0000
swap token® for exactly 1.0000 tokenl to price 0.50000
swap tokenl for exactly 1.0000 token@ to price 2.0000
swap exactly 0.0000000000000010000 token® for tokenl
swap exactly 0.0000000000000010000 tokenl for token®
swap token® for exactly 0.0000000000000010000 tokenl
swap tokenl for exactly 0.0000000000000010000 token®
swap tokenl for token® to price 2.5000

swap token® for tokenl to price 0.40000

L N N N U U N U N N N N

swap token@ for tokenl to price 2.5000
swap tokenl for token® to price 0.40000

<

medium fee, 10:1 price, 2el8 max range liquidity

v swap exactly 1.0000 token® for tokenl
swap exactly 1.0000 tokenl for token®©
swap token® for exactly 1.0000 tokenl
swap tokenl for exactly 1.0000 token® (60ms)
swap exactly 1.0000 token® for tokenl to price 0.50000
swap exactly 1.0000 tokenl for token@ to price 2.0000
swap token@ for exactly 1.0000 tokenl to price 0.50000
swap tokenl for exactly 1.0000 token® to price 2.0000
swap exactly 0.0000000000000010000 tokend® for tokenl
swap exactly 0.0000000000000010000 tokenl for token®
swap token® for exactly 0.0000000000000010000 tokenl
swap tokenl for exactly 0.0000000000000010000 token®
swap tokenl for token® to price 2.5000
swap token@ for tokenl to price 0.40000

A N N N N U N N U N N N N N

swap token@ for tokenl to price 2.5000

A

swap tokenl for token® to price 0.40000

medium fee, 1:10 price, 2el8 max range liquidity

swap exactly 1.0000 token@ for tokenl

swap exactly 1.0000 tokenl for token®©

swap token® for exactly 1.0000 tokenl

swap tokenl for exactly 1.0000 token®©

swap exactly 1.0000 token®@ for tokenl to price 0.50000
swap exactly 1.0000 tokenl for token@ to price 2.0000
swap token@ for exactly 1.0000 tokenl to price 0.50000
swap tokenl for exactly 1.0000 token® to price 2.0000
swap exactly 0.0000000000000010000 token® for tokenl
swap exactly 0.0000000000000010000 tokenl for token®
swap token® for exactly 0.0000000000000010000 tokenl
swap tokenl for exactly 0.0000000000000010000 token®
swap tokenl for token® to price 2.5000

swap token@ for tokenl to price 0.40000

AN

A Y U N U N N U N N U U N N

swap token@ for tokenl to price 2.5000

A

swap tokenl for token® to price 0.40000

medium fee, 1:1 price, 9 liquidity, all liquidity around current price
v swap exactly 1.0000 token® for tokenl

swap exactly 1.0000 tokenl for token®©

swap token® for exactly 1.0000 tokenl

swap tokenl for exactly 1.0000 token®

swap exactly 1.0000 token®@ for tokenl to price 0.50000

swap exactly 1.0000 tokenl for token® to price 2.0000

swap token@ for exactly 1.0000 tokenl to price 0.50000

swap tokenl for exactly 1.0000 token® to price 2.0000

swap exactly 0.0000000000000010000 token® for tokenl

swap exactly 0.0000000000000010000 tokenl for token®

swap token® for exactly 0.0000000000000010000 tokenl

swap tokenl for exactly 0.0000000000000010000 token®

swap tokenl for token® to price 2.5000

swap token@ for tokenl to price 0.40000

A N U N N N N U N N U N NI N

swap token@ for tokenl to price 2.5000

v swap tokenl for token® to price 0.40000

medium fee, 1:1 price, additional liquidity around current price

(%

A N U N N U N U N N U N NI N

A\

swap
swap
swap
swap
swap
swap
swap
swap
swap
swap
swap
swap
swap
swap
swap

swap

exactly 1.0000 token@ for
exactly 1.0000 tokenl for
token@ for exactly 1.0000
tokenl for exactly 1.0000
exactly 1.0000 token@ for
exactly 1.0000 tokenl for
token@ for exactly 1.0000
tokenl for exactly 1.0000

tokenl

tokeno

tokenl

token®

tokenl to price 0.50000
token@ to price 2.0000
tokenl to price 0.50000
token® to price 2.0000

exactly 0.0000000000000010000 token® for tokenl
exactly 0.0000000000000010000 tokenl for token®
token® for exactly 0.0000000000000010000 tokenl
tokenl for exactly 0.0000000000000010000 token®
tokenl for token® to price 2.5000
token® for tokenl to price 0.40000
token® for tokenl to price 2.5000
tokenl for token® to price 0.40000

low fee, large liquidity around current price (stable swap)

v

A N U N U N N U U N N N NI N

A\

swap
swap
swap
swap
swap
swap
swap
swap
swap
swap
swap
swap
swap
swap
swap

swap

exactly 1.0000 token® for
exactly 1.0000 tokenl for
token@ for exactly 1.0000
tokenl for exactly 1.0000
exactly 1.0000 token@ for
exactly 1.0000 tokenl for
token@ for exactly 1.0000
tokenl for exactly 1.0000

tokenl (155ms)

token® (96ms)

tokenl (73ms)

token@ (81ms)

tokenl to price 0.50000
token® to price 2.0000 (143ms)
tokenl to price 0.50000
token® to price 2.0000

exactly 0.0000000000000010000 token® for tokenl
exactly 0.0000000000000010000 tokenl for token®
token@® for exactly 0.0000000000000010000 tokenl
tokenl for exactly 0.0000000000000010000 token®
tokenl for token® to price 2.5000
token® for tokenl to price 0.40000
token® for tokenl to price 2.5000
tokenl for token® to price 0.40000

medium fee, token® liquidity only

v

A N U N N U N N U N N N NI N

A\

A

R R S X X < X 8«

swap
swap
swap
swap
swap
swap
swap
swap
swap
swap
swap
swap
swap
swap
swap

swap

swap
swap
swap
swap
swap
swap
swap
swap
swap

swap

exactly 1.0000 token® for
exactly 1.0000 tokenl for
tokend for exactly 1.0000
tokenl for exactly 1.0000
exactly 1.0000 token@ for
exactly 1.0000 tokenl for
tokend® for exactly 1.0000
tokenl for exactly 1.0000

tokenl

token®

tokenl

token®

tokenl to price 0.50000
token® to price 2.0000
tokenl to price 0.50000
token® to price 2.0000

exactly 0.0000000000000010000 token® for tokenl (44ms)
exactly 0.0000000000000010000 tokenl for token®
tokend for exactly 0.0000000000000010000 tokenl
tokenl for exactly 0.0000000000000010000 token®
tokenl for token® to price 2.5000

token® for tokenl to price 0.40000

token® for tokenl to price 2.5000

tokenl for token® to price 0.40000

medium fee, tokenl liquidity only

exactly 1.0000 token@ for
exactly 1.0000 tokenl for
token@ for exactly 1.0000
tokenl for exactly 1.0000
exactly 1.0000 token@ for
exactly 1.0000 tokenl for
token@ for exactly 1.0000
tokenl for exactly 1.0000

tokenl

tokeno

tokenl

token®

tokenl to price 0.50000
token® to price 2.0000
tokenl to price ©0.50000
token® to price 2.0000

exactly 0.0000000000000010000 token® for tokenl
exactly 0.0000000000000010000 tokenl for token@

swap
swap
swap

swap

S X X X

swap

A

swap

token@
tokenl
tokenl
tokeno
token@
tokenl

for
for
for
for
for

for

exactly 0.
exactly 0.
token@ to
tokenl to
tokenl to
token@ to

000000000000V 10000 tokenl
0000000000000 10000 tokend
price 2.5000
price 9.40000
price 2.5000
price 0.40000

close to

v

swap
swap
swap
swap
swap
swap
swap

swap

max price

exactly 1.0000 token@ for
exactly 1.0000 tokenl for
token@® for exactly 1.0000
tokenl for exactly 1.0000
exactly 1.0000 token® for
exactly 1.0000 tokenl for
token@® for exactly 1.0000
tokenl for exactly 1.0000

tokenl
token®
tokenl
tokeno
tokenl
token®
tokenl
tokeno

0.50000
2.0000
0.50000
2.0000

to
to
to
to

price
price
price

price

swap
swap
swap
swap
swap

swap

A N U N U N N U N N U N N N

swap

A

swap

close to

exactly 0.0000000000000010000 token@ for tokenl
exactly 0.0000000000000010000 tokenl for token®

tokeno
tokenl
tokenl
token@
token@
tokenl

for
for
for
for
for

for

min price

exactly 0.
exactly 0.
token® to
tokenl to
tokenl to
token® to

000000000000V 10000 tokenl
000000000000 10000 tokend
price 2.5000

price 0.40000 (40ms)

price 2.5000 (39ms)

price 0.40000

4

swap
swap
swap
swap
swap
swap
swap
swap
swap

swap

exactly 1.0000 token@ for
exactly 1.0000 tokenl for
tokend® for exactly 1.0000
tokenl for exactly 1.0000
exactly 1.0000 token® for
exactly 1.0000 tokenl for
tokend for exactly 1.0000
tokenl for exactly 1.0000

tokenl
tokeno
tokenl
tokeno
tokenl
token®
tokenl
token®

to
to
to
to

0.50000
2.0000
0.50000
2.0000

price
price
price

price

exactly 0.0000000000000010000 token® for tokenl
exactly 0.0000000000000010000 tokenl for token®

swap
swap
swap

swap

A N U N N N N U N N U U N N

swap

AN

swap
max full

tokeno
tokenl
tokenl
token@
tokeno
tokenl

for
for
for
for
for

for

exactly 0.
exactly 0.
token@ to
tokenl to
tokenl to
token@ to

0000000000000010000 tokenl
0000000000000 10000 tokend
price 2.5000
price 0.40000
price 2.5000
price 0.40000

range liquidity at 1:1 price with default fee

v

A N U N N N N U N N U N N N

v

swap
swap
swap
swap
swap
swap
swap
swap
swap
swap
swap
swap
swap
swap
swap

swap

exactly 1.0000 token@ for
exactly 1.0000 tokenl for
token@ for exactly 1.0000
tokenl for exactly 1.0000
exactly 1.0000 token@ for
exactly 1.0000 tokenl for
token@ for exactly 1.0000
tokenl for exactly 1.0000

tokenl
tokeno
tokenl
token@
tokenl
tokeno
tokenl
token®

to
to
to
to

0.50000
2.0000
0.50000
2.0000

price
price
price

price

exactly 0.0000000000000010000 token® for tokenl
exactly 0.0000000000000010000 tokenl for token®

token® for
tokenl
tokenl
tokeno
token®

tokenl

for
token@ to
tokenl to
tokenl to
token® to

for
for
for

for

initialized at the max ratio

%4

R X X X

swap
swap
swap
swap

swap

exactly 1.0000 token@ for
exactly 1.0000 tokenl for
token@ for exactly 1.0000
tokenl for exactly 1.0000
exactly 1.0000 token@ for

exactly 0.0000000000000010000 tokenl
exactly 0.0000000000000010000 token®
price 2.5000
price 0.40000
price 2.5000
price 0.40000

tokenl (52ms)

tokeno

tokenl

token®

tokenl to price 0.50000 (40ms)

swap exactly 1.0000 tokenl for token® to price 2.0000
swap token® for exactly 1.0000 tokenl to price 0.50000
swap tokenl for exactly 1.0000 token® to price 2.0000
swap exactly 0.0000000000000010000 token® for tokenl
swap exactly 0.0000000000000010000 tokenl for token®
swap token® for exactly 0.0000000000000010000 tokenl
swap tokenl for exactly 0.0000000000000010000 token®
swap tokenl for token® to price 2.5000

swap token@ for tokenl to price 0.40000

R XN S X X < X < X

swap token® for tokenl to price 2.5000
swap tokenl for token® to price 0.40000

A\

initialized at the min ratio

v swap exactly 1.0000 token® for tokenl
swap exactly 1.0000 tokenl for token®©
swap token® for exactly 1.0000 tokenl
swap tokenl for exactly 1.0000 token®©
swap exactly 1.0000 token@ for tokenl to price 0.50000
swap exactly 1.0000 tokenl for token® to price 2.0000
swap token® for exactly 1.0000 tokenl to price 0.50000
swap tokenl for exactly 1.0000 token® to price 2.0000
swap exactly 0.0000000000000010000 token@ for tokenl
swap exactly 0.0000000000000010000 tokenl for token®
swap token® for exactly 0.0000000000000010000 tokenl
swap tokenl for exactly 0.0000000000000010000 token®
swap tokenl for token® to price 2.5000
swap token® for tokenl to price 0.40000
swap token® for tokenl to price 2.5000
swap tokenl for token® to price 0.40000

AN N U N N N N N U N U N N R N

UniswapV3Pool
v constructor initializes immutables
multi-swaps

v multi-swap

Snapshot Summary

> 513 snapshots written from 12 test suites.

959 passing (28s)
20 pending

Ran 2 tests for forge-test/debug/OriginPool.t.sol:0riginalV3PoolDebugTest

[PASS] testWithoutAmountOut() (gas: 92137)

[PASS] testWithoutAmountOut_test2() (gas: 121581)

Suite result: ok. 2 passed; 0 failed; 9 skipped; finished in 7.35ms (372.17us CPU time)

Ran 4 tests for forge-test/debug/StepToNextTickDirectTest.t.sol:StepToNextTickDirectTest
[PASS] test_StepToNextTick_EdgeCase_DifferentAmountThresholds() (gas: 166246)

[PASS] test_StepToNextTick_WhenAmountIsSufficient_PriceMovesToNextTick() (gas: 45623)

[PASS] test_StepToNextTick_WhenCurrentTickEqualsNextTick_StateRemainsUnchanged() (gas: 44101)
[PASS] test_StepToNextTick_ZeroForOneTrue_Behavior() (gas: 4763%4)

Suite result: ok. 4 passed; 0 failed; 9 skipped; finished in 7.76ms (2.07ms CPU time)

Ran 6 tests for forge-test/OrderPoolWithoutOrder.t.sol:0rderPoolSwapWithoutOrdersTest
[PASS] testInitialState() (gas: 27392)

[PASS] testSwapExactOForl_all orders() (gas: 225938)

[PASS] testSwapExactOForl_all orders_with_limit() (gas: 185126)

[PASS] testSwapExactOForl_ori_0001() (gas: 181290)

[PASS] testSwapExact@Forl_ori_001() (gas: 220354)

[PASS] testSwapExactlFor@_all_orders() (gas: 218431)
Suite result: ok. 6 passed; 0 failed; © skipped; finished in 9.24ms (2.96ms CPU time)

Ran 8 tests for forge-test/OriginalV3Pool.t.sol:0riginalV3PoolTest

[PASS] testInitialState() (gas: 18816)

[PASS] testSwapExactOForl_all_orders() (gas: 171596)

[PASS] testSwapExact@Forl_all_orders_with_limit() (gas: 135931)

[PASS] testSwapExactOForl_ori_0001() (gas: 136636)

[PASS] testSwapExact@Forl_ori_001() (gas: 167010)

[PASS] testSwapExactlFor®_all orders() (gas: 167268)

[PASS] testSwapExactlFor@_partial_order() (gas: 113158)

[PASS] testV@CornerCase_TickTransition@_1() (gas: 6112265)

Suite result: ok. 8 passed; 0 failed; 9 skipped; finished in 9.18ms (3.03ms CPU time)

Ran 2 tests for forge-test/UniswapV3Factory.t.sol:MondayFactoryTest

[PASS] testSetNewConfig() (gas: 39997)

[PASS] testSetOrderTickSpacing() (gas: 850606)

Suite result: ok. 2 passed; 0 failed; © skipped; finished in 7.65ms (1.35ms CPU time)

Ran 3 tests for forge-test/debug/StepToNextTickTest.t.sol:StepToNextTickTest

[PASS] test_StepToNextTick_EdgeCase_MinimalAmountAtTickBoundary() (gas: 973237)

[PASS] test_StepToNextTick_WhenAmountIsSufficient_PriceMovesToNextTick() (gas: 477493)

[PASS] test_StepToNextTick_WhenCurrentTickEqualsNextTick_StateRemainsUnchanged() (gas: 475505)
Suite result: ok. 3 passed; 0 failed; 9 skipped; finished in 7.23ms (5.85ms CPU time)

Ran 13 tests for forge-test/orderPoolSwap.t.sol:0rderPoolSwapTest

[PASS] testInitialState() (gas: 27465)

[PASS] testSwapExactOForl() (gas: 241770)

[PASS] testSwapExact@Forl_all_orders_int() (gas: 449741)

[PASS] testSwapExact@Forl_all_orders_two_step_exactly() (gas: 337049)
[PASS] testSwapExact@Forl_all_orders_two_step_with_limit() (gas: 494522)
[PASS] testSwapExactOForl_all_orders_with_limit() (gas: 444769)

[PASS] testSwapExact@ForOutl_all_orders() (gas: 447522)

[PASS] testSwapExact@ForOutl_partial_order() (gas: 268319)

[PASS] testSwapExactlFor@_all_orders() (gas: 437733)

[PASS] testSwapExactlFor@_partial_order() (gas: 256269)

[PASS] testSwapExactlForOut@_all_orders() (gas: 420598)

[PASS] testSwapExactlForOut@_partial_order() (gas: 245227)

[PASS] testSwapFeeEvent() (gas: 429278)

Suite result: ok. 13 passed; © failed; 0 skipped; finished in 10.44ms (8.06ms CPU time)

Ran 4 tests for forge-test/ExtremeTickSpacing.t.sol:ExtremeTickSpacingTest

[PASS] testCasel_PartialFilliTo@() (gas: 2006852)

[PASS] testCase2_PartialFilleTol() (gas: 1004668)

[PASS] testCase3_ExactOutlTo@d() (gas: 1989043)

[PASS] testCase4_ExactOut@Tol() (gas: 996406)

Suite result: ok. 4 passed; 0 failed; 9 skipped; finished in 13.76ms (11.55ms CPU time)

Ran 3 tests for forge-test/debug/SwapBug.t.sol:0rderFilledWhileNotAtPrice

[PASS] test_OrderFillBehavior_AtTick24080_WithSqrtPriceVariations() (gas: 1290187)
[PASS] test_OrderFillBehavior_AtTick24082_WithSqrtPriceVariations() (gas: 1558073)
[PASS] test_UnreachedFutureOrderTick_IsNotFillable_ButCurrentCodeFills() (gas: 621190)
Suite result: ok. 3 passed; 0 failed; 9 skipped; finished in 6.86ms (5.37ms CPU time)

Ran 1 test for forge-test/MonadOnline.t.sol:MonadOnlineTest
[FAIL: vm.envString: environment variable "MONAD_TESTNET_RPC" not found] setUp() (gas: ©)
Suite result: FAILED. O passed; 1 failed; 0 skipped; finished in 2.36ms (0.00ns CPU time)

Ran 11 tests for forge-test/periphery/SwapRouterPlace.t.sol:SwapRouterPlaceTest
[PASS] testBatchwWithdrawToNativeToken() (gas: 1659291)

[PASS] testCancelPlaceWithNativeToken() (gas: 273446)

[PASS] testCancelwWithNativeToken() (gas: 536571)

[PASS] testDefaultRecipient() (gas: 275669)

[PASS] testPlaceBothDirections() (gas: 496027)

[PASS] testPlaceMultipleOrders() (gas: 610492)

[PASS] testPlaceOrder() (gas: 294099)

[PASS] testPlaceWithNativeToken() (gas: 288334)

[PASS] testRevert_PlaceWithIncorrectNativeAmount() (gas: 37042)

[PASS] testWithdrawToNativeToken() (gas: 1170669)

[PASS] test_revert_invalidMinOrderAmount() (gas: 425337)

Suite result: ok. 11 passed; © failed; 0 skipped; finished in 24.00ms (17.17ms CPU time)

Ran 2 tests for forge-test/PartialFilledOrder.t.sol:PartialFilledOrderTest

[PASS] testMultiplePartialFills_CheckToken@() (gas: 1675445)

[PASS] testMultiplePartialFills_CheckTokenl() (gas: 1700316)

Suite result: ok. 2 passed; 0 failed; 9 skipped; finished in 14.97ms (13.51ms CPU time)

Ran 4 tests for forge-test/periphery/QuoterV2.t.sol:QuoterV2Test

[PASS] testQuoteExactInputSingle() (gas: 195492)

[PASS] testQuoteExactOutputSingle() (gas: 382582)

[PASS] testQuoteWithInsufficientlLiquidity() (gas: 1190085)

[PASS] testQuoteWithPriceLimit() (gas: 192197)

Suite result: ok. 4 passed; 0 failed; 9 skipped; finished in 9.06ms (7.42ms CPU time)

Ran 24 tests for forge-test/BranchCorner.t.sol:BranchCornerCase
[PASS] test10_stepToNext_tickSpacingl() (gas: 926625)

[PASS] test10_stepToNext_tickSpacing2() (gas: 1010197)

[PASS] test10_stepToNext_tickSpacingé@() (gas: 957195)

[PASS] testFeeAmountCorrect_tickSpacingl() (gas: 926602)

[PASS] testFeeAmountCorrect_tickSpacing2() (gas: 794372)

[PASS] testFeeAmountCorrect_tickSpacingé@() (gas: 850045)

[PASS] testFinalTickTotalSizelIsZero_tickSpacingl() (gas: 926603)
[PASS] testFinalTickTotalSizelIsZero_tickSpacing2() (gas: 794350)
[PASS] testFinalTickTotalSizeIsZero_tickSpacingé@() (gas: 850001)
[PASS] testNextRangeTick_tickSpacingl() (gas: 671593)

[PASS] testNextRangeTick_tickSpacing2() (gas: 982421)

[PASS] testNextRangeTick_tickSpacingé@() (gas: 632618)

[PASS] testNoLeftOrder_tickSpacingl() (gas: 926602)

[PASS] testNoLeftOrder_tickSpacing2() (gas: 760208)

[PASS] testNoLeftOrder_tickSpacing6@() (gas: 849956)

[PASS] testNotCrossEmptyRangeTick_tickSpacingl() (gas: 869602)
[PASS] testNotCrossEmptyRangeTick_tickSpacing2() (gas: 818289)
[PASS] testNotCrossEmptyRangeTick_tickSpacing6@() (gas: 980998)
[PASS] testStepNextEqFinalTick_tickSpacingl() (gas: 871503)
[PASS] testStepNextEqFinalTick_tickSpacing2() (gas: 789544)
[PASS] testStepNextEgqFinalTick_tickSpacing60() (gas: 823317)
[PASS] testStepToNext_01_tickSpacingl() (gas: 1013242)

[PASS] testStepToNext_01_tickSpacing2() (gas: 1010933)

[PASS] testStepToNext_01_tickSpacing60() (gas: 825373)

Suite result: ok. 24 passed; © failed; 0 skipped; finished in 28.55ms (23.67ms CPU time)

Ran 8 tests for forge-test/CornerCase.t.sol:CornerCaseTest

[PASS] testRedundantAmountIn() (gas: 1484744)

[PASS] testSwapExact@Forl_all_orders_two_step_exactly() (gas: 1607319)

[PASS] testSwapExact@Forl_all_orders_two_step_exactly_liqg2() (gas: 1490806)

[PASS] testSwapExactRangeTickInnerSize() (gas: 1460887)

[PASS] testTickStatus() (gas: 1254348)

[PASS] testTickTransition@_1_with_orders() (gas: 2641158)

[PASS] testTickTransitionl_0_with_orders() (gas: 228837%)

[PASS] testTickTransitionCannotRunTwiceIfZeroForOneSwapEndsAtFractionalPriceJustBelowTick() (gas:
1903643)

Suite result: ok. 8 passed; 0 failed; 9 skipped; finished in 29.05ms (18.27ms CPU time)

Ran 17 tests for forge-test/OrderPoolWithdraw.t.sol:0rderPoolWithdrawTest
[PASS] testCancelOrderAfterPartialFill_Token@_Nonce@Increment() (gas: 546771)
[PASS] testCancelOrderAfterPartialFill_Tokenl_NoncelIncrement() (gas: 539404)

[PASS] testCancelWithDifferentSizes() (gas: 408446)

[PASS] testOrderTickSpacingValidation() (gas: 741136)

[PASS] testReadOrderStatus_FullyFilled() (gas: 442280)

[PASS] testReadOrderStatus_NoFill() (gas: 256172)

[PASS] testReadOrderStatus_PartiallyFilled() (gas: 687846)

[PASS] testWithdrawAfterSwap@Forl_ExactIn_OutlEther() (gas: 677250)

[PASS] testWithdrawAfterSwapOForl_ExactOutlEther() (gas: 692807)

[PASS] testWithdrawAfterSwapOForl_ExactOutl_5BEther() (gas: 725092)

[PASS] testWithdrawAfterSwap@Forl_ExactOutl_5Ether_withMakerFee() (gas: 722371)
[PASS] testWithdrawAfterSwapOForl_ExactOut_2Ether() (gas: 832304)

[PASS] testWithdrawAfterSwaplFor@_ExactIn_OutlEther() (gas: 616774)

[PASS] testWithdrawAfterSwaplFor@_ExactIn_Outl_5Ether() (gas: 669808)

[PASS] testWithdrawAfterSwaplFor@_ExactOutlEther() (gas: 617080)

[PASS] testWithdrawAfterSwaplFor@_ExactOutl_bEther() (gas: 668592)

[PASS] testWithdrawAfterSwaplFor@_ExactOutl_bEther_withMakerFee() (gas: 676136)
Suite result: ok. 17 passed; © failed; 0 skipped; finished in 6.78ms (14.85ms CPU time)

Ran 1 test for forge-test/LimitTickSpacing_2.t.sol:LimitTickSpacingTest_2
[PASS] test_2TickSpacing_Casel_PartialFilllTo®@() (gas: 2204772)
Suite result: ok. 1 passed; 0 failed; 9 skipped; finished in 5.61ms (4.31ms CPU time)

Ran 9 tests for forge-test/OrderPoolPlace.t.sol:0OrderPoolPlaceTest
[PASS] testBatchCancel() (gas: 495330)

[PASS] testBatchPlace() (gas: 564382)

[PASS] testBatchWithdraw() (gas: 966797)

[PASS] testCancelOrderEvent() (gas: 298053)

[PASS] testPartialFillAndCancel() (gas: 641781)

[PASS] testPlaceAndCancelMultipleOrders() (gas: 503937)

[PASS] testPlaceAndCancelOrder() (gas: 281461)

[PASS] testPlaceOrderWithInvalidAmount() (gas: 308226)

[PASS] testPlaceSwapPlace() (gas: 95907%4)

Suite result: ok. 9 passed; 0 failed; 9 skipped; finished in 9.46ms (5.94ms CPU time)

Ran 6 tests for forge-test/DenseOrderSwap.t.sol:DenseOrderSwapTest

[PASS] testlLargeSwap() (gas: 391262)

[PASS] testMixSwap_10order() (gas: 1445186)

[PASS] testMixSwap_b5order() (gas: 1409918)

[PASS] testSmallSwap() (gas: 1597617)

[PASS] testSmallSwapNegativeTicks() (gas: 412408%4)

[PASS] testSwapThenPlaceThenSwap() (gas: 918895)

Suite result: ok. 6 passed; 0 failed; 0 skipped; finished in 31.50ms (25.09ms CPU time)

Ran 3 tests for forge-test/lib-test/FullMath.t.sol:FullMathTest

[PASS] testFuzzMulDivReversibility(uint256,uint24) (runs: 256, u: 5243, ~: 5217)

[PASS] testMulDivEdgeCases() (gas: 66663)

[PASS] testMulDivReversibility() (gas: 9135)

Suite result: ok. 3 passed; 0 failed; 9 skipped; finished in 10.27ms (10.35ms CPU time)

Ran 3 tests for forge-test/lib-test/LibOrder.t.sol:LibOrderTest

[PASS] testCalAmountAtCurrentTickEdgeCases() (gas: 700609)

[PASS] testFuzzCalAmountAtCurrentTick(uint128,int24) (runs: 256, u: 25814, ~: 19828)
[PASS] testOverflowProtectionDifference() (gas: 83240)

Suite result: ok. 3 passed; 0 failed; 9 skipped; finished in 46.99ms (43.36ms CPU time)

Ran 21 test suites in 229.33ms (298.09ms CPU time): 133 tests passed, 1 failed, 9 skipped (134 total
tests)

Failing tests:
Encountered 1 failing test in forge-test/MonadOnline.t.sol:MonadOnlineTest

[FAIL: vm.envString: environment variable "MONAD_TESTNET_RPC" not found] setUp() (gas: 0)

Encountered a total of 1 failing tests, 133 tests succeeded

Code Coverage

No coverage data can be generated due to stack too deep errors.

Changelog

e 2025-09-25 - Initial Report
e 2025-10-23 - Final Report

About Quantstamp

Quantstamp is a global leader in blockchain security. Founded in 2017, Quantstamp’s mission is to securely onboard the next billion users to Web3
through its best-in-class Web3 security products and services.

Quantstamp’s team consists of cybersecurity experts hailing from globally recognized organizations including Microsoft, AWS, BMW, Meta, and
the Ethereum Foundation. Quantstamp engineers hold PhDs or advanced computer science degrees, with decades of combined experience in
formal verification, static analysis, blockchain audits, penetration testing, and original leading-edge research.

To date, Quantstamp has performed more than 500 audits and secured over $200 billion in digital asset risk from hackers. Quantstamp has
worked with a diverse range of customers, including startups, category leaders and financial institutions. Brands that Quantstamp has worked
with include Ethereum 2.0, Binance, Visa, PayPal, Polygon, Avalanche, Curve, Solana, Compound, Lido, MakerDAO, Arbitrum, OpenSea and the
World Economic Forum.

Quantstamp’s collaborations and partnerships showcase our commitment to world-class research, development and security. We're honored to
work with some of the top names in the industry and proud to secure the future of web3.

Notable Collaborations & Customers:
e Blockchains: Ethereum 2.0, Near, Flow, Avalanche, Solana, Cardano, Binance Smart Chain, Hedera Hashgraph, Tezos
e DeFi: Curve, Compound, Maker, Lido, Polygon, Arbitrum, SushiSwap
e NFT: OpenSea, Parallel, Dapper Labs, Decentraland, Sandbox, Axie Infinity, llluvium, NBA Top Shot, Zora
e Academic institutions: National University of Singapore, MIT

Timeliness of content

The content contained in the report is current as of the date appearing on the report and is subject to change without notice, unless indicated
otherwise by Quantstamp; however, Quantstamp does not guarantee or warrant the accuracy, timeliness, or completeness of any report you
access using the internet or other means, and assumes no obligation to update any information following publication or other making available of
the report to you by Quantstamp.

Notice of confidentiality

This report, including the content, data, and underlying methodologies, are subject to the confidentiality and feedback provisions in your
agreement with Quantstamp. These materials are not to be disclosed, extracted, copied, or distributed except to the extent expressly authorized
by Quantstamp.

Links to other websites

You may, through hypertext or other computer links, gain access to web sites operated by persons other than Quantstamp. Such hyperlinks are
provided for your reference and convenience only, and are the exclusive responsibility of such web sites' owners. You agree that Quantstamp are
not responsible for the content or operation of such web sites, and that Quantstamp shall have no liability to you or any other person or entity for
the use of third-party web sites. Except as described below, a hyperlink from this web site to another web site does not imply or mean that
Quantstamp endorses the content on that web site or the operator or operations of that site. You are solely responsible for determining the
extent to which you may use any content at any other web sites to which you link from the report. Quantstamp assumes no responsibility for the
use of third-party software on any website and shall have no liability whatsoever to any person or entity for the accuracy or completeness of any
output generated by such software.

Disclaimer

The review and this report are provided on an as-is, where-is, and as-available basis. To the fullest extent permitted by law, Quantstamp
disclaims all warranties, expressed implied, in connection with this report, its content, and the related services and products and your use
thereof, including, without limitation, the implied warranties of merchantability, fithess for a particular purpose, and non-infringement. You agree
that access and/or use of the report and other results of the review, including but not limited to any associated services, products, protocols,
platforms, content, and materials, will be at your sole risk. FOR AVOIDANCE OF DOUBT, THE REPORT, ITS CONTENT, ACCESS, AND/OR USAGE
THEREOF, INCLUDING ANY ASSOCIATED SERVICES OR MATERIALS, SHALL NOT BE CONSIDERED OR RELIED UPON AS ANY FORM OF
FINANCIAL, INVESTMENT, TAX, LEGAL, REGULATORY, OR OTHER ADVICE. This report is based on the scope of materials and documentation
provided for a limited review at the time provided. You acknowledge that Blockchain technology remains under development and is subject to
unknown risks and flaws and, as such, the report may not be complete or inclusive of all vulnerabilities. The review is limited to the materials
identified in the report and does not extend to the compiler layer, or any other areas beyond the programming language, or programming aspects
that could present security risks. The report does not indicate the endorsement by Quantstamp of any particular project or team, nor guarantee
its security, and may not be represented as such. No third party is entitled to rely on the report in any way, including for the purpose of making
any decisions to buy or sell a product, service or any other asset. Quantstamp does not warrant, endorse, guarantee, or assume responsibility for

any product or service advertised or offered by a third party, or any open source or third-party software, code, libraries, materials, or information
to, called by, referenced by or accessible through the report, its content, or any related services and products, any hyperlinked websites, or any
other websites or mobile applications, and we will not be a party to or in any way be responsible for monitoring any transaction between you and
any third party. As with the purchase or use of a product or service through any medium or in any environment, you should use your best
judgment and exercise caution where appropriate.

3} Quantstamp

© 2025 - Quantstamp, Inc. Monday Trade - Spot

